These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 34851745)

  • 1. Small directional treadmill perturbations induce differential gait stability adaptation.
    Li J; Huang HJ
    J Neurophysiol; 2022 Jan; 127(1):38-55. PubMed ID: 34851745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfer of reactive balance adaptation from stance-slip perturbation to stance-trip perturbation in chronic stroke survivors.
    Dusane S; Wang E; Bhatt T
    Restor Neurol Neurosci; 2019; 37(5):469-482. PubMed ID: 31561399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The margin of stability is affected differently when walking under quasi-random treadmill perturbations with or without full visual support.
    Wang Z; Xie H; Chien JH
    PeerJ; 2024; 12():e16919. PubMed ID: 38390385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of unexpected mechanical perturbations during treadmill walking on spatiotemporal gait parameters, and the dynamic stability measures by which to quantify postural response.
    Madehkhaksar F; Klenk J; Sczuka K; Gordt K; Melzer I; Schwenk M
    PLoS One; 2018; 13(4):e0195902. PubMed ID: 29672558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direction-Dependent Adaptation of Dynamic Gait Stability Following Waist-Pull Perturbations.
    Martelli D; Vashista V; Micera S; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1304-1313. PubMed ID: 26625418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptation to repeated gait-slip perturbations among individuals with multiple sclerosis.
    Yang F; Su X; Wen PS; Lazarus J
    Mult Scler Relat Disord; 2019 Oct; 35():135-141. PubMed ID: 31376685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive control of gait stability in reducing slip-related backward loss of balance.
    Bhatt T; Wening JD; Pai YC
    Exp Brain Res; 2006 Mar; 170(1):61-73. PubMed ID: 16344930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying dynamic and postural balance difficulty during gait perturbations using stabilizing/destabilizing forces.
    Ilmane N; Croteau S; Duclos C
    J Biomech; 2015 Feb; 48(3):441-8. PubMed ID: 25557656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating proactive balance control in individuals with incomplete spinal cord injury while walking on a known slippery surface.
    Bone MD; Arora T; Musselman KE; Lanovaz JL; Linassi GA; Oates AR
    Neurosci Lett; 2021 Apr; 749():135744. PubMed ID: 33610664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased use of stepping strategy in response to medio-lateral perturbations in the elderly relates to altered reactive tibialis anterior activity.
    Afschrift M; van Deursen R; De Groote F; Jonkers I
    Gait Posture; 2019 Feb; 68():575-582. PubMed ID: 30654320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treadmill-gait slip training in community-dwelling older adults: mechanisms of immediate adaptation for a progressive ascending-mixed-intensity protocol.
    Wang Y; Wang S; Lee A; Pai YC; Bhatt T
    Exp Brain Res; 2019 Sep; 237(9):2305-2317. PubMed ID: 31286173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing preparative gait adaptations in persons with transtibial amputation in response to repeated medial-lateral perturbations.
    Sturdy J; Gates DH; Darter BJ; Wilken JM
    Gait Posture; 2014 Mar; 39(3):995-8. PubMed ID: 24411224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of extended stance time on a powered knee prosthesis and gait symmetry on the lateral control of balance during walking in individuals with unilateral amputation.
    Brandt A; Huang HH
    J Neuroeng Rehabil; 2019 Nov; 16(1):151. PubMed ID: 31783759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upward perturbations trigger a stumbling effect.
    Cano Porras D; Heimler B; Jacobs JV; Naor SK; Inzelberg R; Zeilig G; Plotnik M
    Hum Mov Sci; 2023 Apr; 88():103069. PubMed ID: 36871477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transfer and retention effects of gait training with anterior-posterior perturbations to postural responses after medio-lateral gait perturbations in older adults.
    Rieger MM; Papegaaij S; Pijnappels M; Steenbrink F; van Dieën JH
    Clin Biomech (Bristol, Avon); 2020 May; 75():104988. PubMed ID: 32174482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of the effects of mediolateral surface and foot placement perturbations on balance control and response strategies during walking.
    Brough LG; Neptune RR
    Gait Posture; 2024 Feb; 108():313-319. PubMed ID: 38199090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maintaining sagittal plane balance compromises frontal plane balance during reactive stepping in people post-stroke.
    Buurke TJW; Liu C; Park S; den Otter R; Finley JM
    Clin Biomech (Bristol, Avon); 2020 Dec; 80():105135. PubMed ID: 32818902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retention and generalizability of balance recovery response adaptations from trip perturbations across the adult life span.
    König M; Epro G; Seeley J; Potthast W; Karamanidis K
    J Neurophysiol; 2019 Nov; 122(5):1884-1893. PubMed ID: 31509470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing slip-like responses during gait using an entire support surface perturbation: Comparisons to previously established slip methods.
    Huntley AH; Rajachandrakumar R; Schinkel-Ivy A; Mansfield A
    Gait Posture; 2019 Mar; 69():130-135. PubMed ID: 30708096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of various arm and walking conditions on postural dynamic stability when recovering from a trip perturbation.
    Gholizadeh H; Hill A; Nantel J
    Gait Posture; 2020 Feb; 76():284-289. PubMed ID: 31884255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.