These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 34851846)

  • 1. AutoBCS: Block-Based Image Compressive Sensing With Data-Driven Acquisition and Noniterative Reconstruction.
    Gan H; Gao Y; Liu C; Chen H; Zhang T; Liu F
    IEEE Trans Cybern; 2023 Apr; 53(4):2558-2571. PubMed ID: 34851846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient lossy compression for compressive sensing acquisition of images in compressive sensing imaging systems.
    Li X; Lan X; Yang M; Xue J; Zheng N
    Sensors (Basel); 2014 Dec; 14(12):23398-418. PubMed ID: 25490597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Image-Based Quantized Compressive Sensing Scheme Using Zadoff-Chu Measurement Matrix.
    Xue L; Qiu W; Wang Y; Wang Z
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-Channel Reconstruction Network for Image Compressive Sensing.
    Zhang Z; Gao D; Xie X; Shi G
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31167471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Block Compressive Sensing (BCS) Based Low Complexity, Energy Efficient Visual Sensor Platform with Joint Multi-Phase Decoder (JMD).
    Ebrahim M; Chia WC; Adil SH; Raza K
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31109154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal compressed sensing reconstructions of fMRI using 2D deterministic and stochastic sampling geometries.
    Jeromin O; Pattichis MS; Calhoun VD
    Biomed Eng Online; 2012 May; 11():25. PubMed ID: 22607467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Image Compressed Sensing using Convolutional Neural Network.
    Shi W; Jiang F; Liu S; Zhao D
    IEEE Trans Image Process; 2019 Jul; ():. PubMed ID: 31331892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image Denoising Using a Compressive Sensing Approach Based on Regularization Constraints.
    Mahdaoui AE; Ouahabi A; Moulay MS
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multilayer residual sparsifying transform (MARS) model for low-dose CT image reconstruction.
    Yang X; Long Y; Ravishankar S
    Med Phys; 2021 Oct; 48(10):6388-6400. PubMed ID: 34514587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Efficient Light-weight Network for Fast Reconstruction on MR Images.
    Zhen B; Zheng Y; Qiu B
    Curr Med Imaging; 2021; 17(11):1374-1384. PubMed ID: 33459243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prior data assisted compressed sensing: a novel MR imaging strategy for real time tracking of lung tumors.
    Yip E; Yun J; Wachowicz K; Heikal AA; Gabos Z; Rathee S; Fallone BG
    Med Phys; 2014 Aug; 41(8):082301. PubMed ID: 25086550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SpiNet: A deep neural network for Schatten p-norm regularized medical image reconstruction.
    Rastogi A; Yalavarthy PK
    Med Phys; 2021 May; 48(5):2214-2229. PubMed ID: 33525049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep compressed sensing MRI via a gradient-enhanced fusion model.
    Dai Y; Wang C; Wang H
    Med Phys; 2023 Mar; 50(3):1390-1405. PubMed ID: 36695158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Deep Convolutional Gated Recurrent Unit for CT Image Reconstruction.
    Ikuta M; Zhang J
    IEEE Trans Neural Netw Learn Syst; 2023 Dec; 34(12):10612-10625. PubMed ID: 35522637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AMP-Net: Denoising-Based Deep Unfolding for Compressive Image Sensing.
    Zhang Z; Liu Y; Liu J; Wen F; Zhu C
    IEEE Trans Image Process; 2021; 30():1487-1500. PubMed ID: 33338019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatiotemporal structure-aware dictionary learning-based 4D CBCT reconstruction.
    Zhi S; Kachelrieß M; Mou X
    Med Phys; 2021 Oct; 48(10):6421-6436. PubMed ID: 34514608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Image Deblurring Using Multi-Stream Bottom-Top-Bottom Attention Network and Global Information-Based Fusion and Reconstruction Network.
    Zhou Q; Ding M; Zhang X
    Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32635206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HFIST-Net: High-throughput fast iterative shrinkage thresholding network for accelerating MR image reconstruction.
    Geng C; Jiang M; Fang X; Li Y; Jin G; Chen A; Liu F
    Comput Methods Programs Biomed; 2023 Apr; 232():107440. PubMed ID: 36881983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep neural network inspired by iterative shrinkage-thresholding algorithm with data consistency (NISTAD) for fast Undersampled MRI reconstruction.
    Qiu W; Li D; Jin X; Liu F; Sun B
    Magn Reson Imaging; 2020 Jul; 70():134-144. PubMed ID: 32353530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning enabled ultra-fast-pitch acquisition in clinical X-ray computed tomography.
    Gong H; Ren L; Hsieh SS; McCollough CH; Yu L
    Med Phys; 2021 Oct; 48(10):5712-5726. PubMed ID: 34415068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.