These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Action potential patterns of isolated frog muscle spindle in response to sinusoidal stimulation. Querfurth H J Neurophysiol; 1985 Jan; 53(1):76-88. PubMed ID: 3156217 [TBL] [Abstract][Full Text] [Related]
7. Action-potential initiation and maintained activity of the isolated frog muscle spindle. Querfurth H Eur J Neurosci; 2006 Aug; 24(4):1147-56. PubMed ID: 16930440 [TBL] [Abstract][Full Text] [Related]
8. Information transmission by isolated frog muscle spindle. Eckhorn R; Querfurth H Biol Cybern; 1985; 52(3):165-76. PubMed ID: 2992613 [TBL] [Abstract][Full Text] [Related]
9. Presynaptic calcium dynamics at the frog retinotectal synapse. Feller MB; Delaney KR; Tank DW J Neurophysiol; 1996 Jul; 76(1):381-400. PubMed ID: 8836232 [TBL] [Abstract][Full Text] [Related]
10. The response of primary muscle spindle endings to random muscle stretch: a quantitative analysis. Kröller J; Grüsser OJ; Weiss LR Exp Brain Res; 1985; 61(1):1-10. PubMed ID: 2935420 [TBL] [Abstract][Full Text] [Related]
11. Effect of palytoxin on membrane and potential and current of frog myelinated fibers. Dubois JM; Cohen JB J Pharmacol Exp Ther; 1977 Apr; 201(1):148-5. PubMed ID: 15101 [TBL] [Abstract][Full Text] [Related]
12. Time coupling of skeletomotor discharges in response to pseudo-random transsynaptic and transmembrane stimulation. Anastasijević R; Jovanović K; Ljubisavljević M; Vuco J Biol Cybern; 1991; 64(4):321-8. PubMed ID: 2025666 [TBL] [Abstract][Full Text] [Related]
13. The transducer and encoder of frog muscle spindles are essentially nonlinear. Physiological conclusions from a white-noise analysis. Pöpel B; Querfurth H Biol Cybern; 1984; 51(1):21-32. PubMed ID: 6239659 [TBL] [Abstract][Full Text] [Related]
14. The frequency response of frog muscle spindles under various conditions. Kirkwood PA J Physiol; 1972 Apr; 222(1):135-60. PubMed ID: 4260959 [TBL] [Abstract][Full Text] [Related]
15. Observations on phase-locking within the response of primary muscle spindle afferents to pseudo-random stretch. Kröller J; Grüsser OJ; Weiss LR Biol Cybern; 1988; 59(1):49-54. PubMed ID: 3401518 [TBL] [Abstract][Full Text] [Related]
16. [Effect of motor stimulation and stretching on afferent activity of the neuromuscular spindle isolated from the frog]. Corda M; Pantaleo T; Calamai F Arch Fisiol; 1979 Jun; 71(1-4):241-63. PubMed ID: 162338 [TBL] [Abstract][Full Text] [Related]
17. Rate of rise of the cumulative depolarization evoked by repetitive stimulation of small-caliber afferents is a predictor of action potential windup in rat spinal neurons in vitro. Sivilotti LG; Thompson SW; Woolf CJ J Neurophysiol; 1993 May; 69(5):1621-31. PubMed ID: 8389833 [TBL] [Abstract][Full Text] [Related]
18. Transition voltage of the Ranvier node under extreme hyposmotic conditions. Müller-Mohnssen H; Barske H Am J Physiol; 1974 Apr; 226(4):844-54. PubMed ID: 4545046 [No Abstract] [Full Text] [Related]
19. Single potassium channel conductance in the frog node of Ranvier. de Bruin G; Guy I; Van den Berg RJ Biophys J; 1984 Apr; 45(4):855-8. PubMed ID: 6326879 [TBL] [Abstract][Full Text] [Related]
20. Intensity and frequency characteristics of pacinian corpuscles. I. Action potentials. Bolanowski SJ; Zwislocki JJ J Neurophysiol; 1984 Apr; 51(4):793-811. PubMed ID: 6716124 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]