These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 3485187)

  • 1. Encoder response of isolated frog muscle spindle elicited by pseudorandom noise stimuli.
    Querfurth H
    J Neurophysiol; 1986 Jan; 55(1):13-22. PubMed ID: 3485187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transducer action of isolated frog muscle spindle evoked by pseudorandom noise stimuli.
    Querfurth H
    J Neurophysiol; 1986 Jan; 55(1):1-12. PubMed ID: 3485186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Action potential patterns of isolated frog muscle spindle in response to sinusoidal stimulation.
    Querfurth H
    J Neurophysiol; 1985 Jan; 53(1):76-88. PubMed ID: 3156217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facilitation effect of auxiliary noise stimuli on response of isolated frog muscle spindle to sinusoidal movements.
    Querfurth H; Grüsser OJ
    J Neurophysiol; 1986 Jan; 55(1):23-33. PubMed ID: 3485188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Processing vibratory stimuli in isolated frog muscle spindle.
    Querfurth H
    Exp Brain Res; 1985; 61(1):11-20. PubMed ID: 2935421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Receptor potentials of isolated frog muscle spindle evoked by sinusoidal stimulation.
    Querfurth H
    J Neurophysiol; 1985 Jan; 53(1):60-75. PubMed ID: 3156216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Action-potential initiation and maintained activity of the isolated frog muscle spindle.
    Querfurth H
    Eur J Neurosci; 2006 Aug; 24(4):1147-56. PubMed ID: 16930440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Information transmission by isolated frog muscle spindle.
    Eckhorn R; Querfurth H
    Biol Cybern; 1985; 52(3):165-76. PubMed ID: 2992613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observations on phase-locking within the response of primary muscle spindle afferents to pseudo-random stretch.
    Kröller J; Grüsser OJ; Weiss LR
    Biol Cybern; 1988; 59(1):49-54. PubMed ID: 3401518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intensity and frequency characteristics of pacinian corpuscles. I. Action potentials.
    Bolanowski SJ; Zwislocki JJ
    J Neurophysiol; 1984 Apr; 51(4):793-811. PubMed ID: 6716124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The response of primary muscle spindle endings to random muscle stretch: a quantitative analysis.
    Kröller J; Grüsser OJ; Weiss LR
    Exp Brain Res; 1985; 61(1):1-10. PubMed ID: 2935420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The transducer and encoder of frog muscle spindles are essentially nonlinear. Physiological conclusions from a white-noise analysis.
    Pöpel B; Querfurth H
    Biol Cybern; 1984; 51(1):21-32. PubMed ID: 6239659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The frequency response of frog muscle spindles under various conditions.
    Kirkwood PA
    J Physiol; 1972 Apr; 222(1):135-60. PubMed ID: 4260959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efferent control of posterior canal afferent receptor discharge in the frog labyrinth.
    Rossi ML; Martini M
    Brain Res; 1991 Jul; 555(1):123-34. PubMed ID: 1933324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model study on the influence of a slowly activating potassium conductance on repetitive firing patterns of muscle spindle primary endings.
    Otten E; Hulliger M; Scheepstra KA
    J Theor Biol; 1995 Mar; 173(1):67-78. PubMed ID: 7739213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response of monkey glabrous skin mechanoreceptors to random-noise sequences: I. Temporal response characteristics.
    Looft FJ
    Somatosens Mot Res; 1994; 11(4):327-44. PubMed ID: 7778410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time coupling of skeletomotor discharges in response to pseudo-random transsynaptic and transmembrane stimulation.
    Anastasijević R; Jovanović K; Ljubisavljević M; Vuco J
    Biol Cybern; 1991; 64(4):321-8. PubMed ID: 2025666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reverse correlation analysis of the stretch response of primary muscle spindle afferent fibers.
    Kröller J
    Biol Cybern; 1993; 69(5-6):447-56. PubMed ID: 8274543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation of the discharge of frog muscle spindles following a stretch.
    Brokensha G; Westbury DR
    J Physiol; 1974 Oct; 242(2):383-403. PubMed ID: 4281835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of motor stimulation and stretching on afferent activity of the neuromuscular spindle isolated from the frog].
    Corda M; Pantaleo T; Calamai F
    Arch Fisiol; 1979 Jun; 71(1-4):241-63. PubMed ID: 162338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.