These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34852336)

  • 1. Surface acoustic wave controlled skyrmion-based synapse devices.
    Chen C; Lin T; Niu J; Sun Y; Yang L; Kang W; Lei N
    Nanotechnology; 2021 Dec; 33(11):. PubMed ID: 34852336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic skyrmion-based synaptic devices.
    Huang Y; Kang W; Zhang X; Zhou Y; Zhao W
    Nanotechnology; 2017 Feb; 28(8):08LT02. PubMed ID: 28070023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Creation of magnetic skyrmions by surface acoustic waves.
    Yokouchi T; Sugimoto S; Rana B; Seki S; Ogawa N; Kasai S; Otani Y
    Nat Nanotechnol; 2020 May; 15(5):361-366. PubMed ID: 32231267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pattern recognition with neuromorphic computing using magnetic field-induced dynamics of skyrmions.
    Yokouchi T; Sugimoto S; Rana B; Seki S; Ogawa N; Shiomi Y; Kasai S; Otani Y
    Sci Adv; 2022 Sep; 8(39):eabq5652. PubMed ID: 36179033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic skyrmion-based artificial neuron device.
    Li S; Kang W; Huang Y; Zhang X; Zhou Y; Zhao W
    Nanotechnology; 2017 Aug; 28(31):31LT01. PubMed ID: 28639562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave field frequency and current density modulated skyrmion-chain in nanotrack.
    Ma F; Ezawa M; Zhou Y
    Sci Rep; 2015 Oct; 5():15154. PubMed ID: 26468929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic-driven magnetic skyrmion motion.
    Yang Y; Zhao L; Yi D; Xu T; Chai Y; Zhang C; Jiang D; Ji Y; Hou D; Jiang W; Tang J; Yu P; Wu H; Nan T
    Nat Commun; 2024 Feb; 15(1):1018. PubMed ID: 38310112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mirroring Skyrmions in Synthetic Antiferromagnets via Modular Design.
    Deng P; Zhuo F; Li H; Cheng Z
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skyrmion flop transition and congregation of mutually orthogonal skyrmions in cubic helimagnets.
    Vlasov SM; Uzdin VM; Leonov AO
    J Phys Condens Matter; 2020 May; 32(18):185801. PubMed ID: 31962299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voltage-controlled skyrmion-based nanodevices for neuromorphic computing using a synthetic antiferromagnet.
    Yu Z; Shen M; Zeng Z; Liang S; Liu Y; Chen M; Zhang Z; Lu Z; You L; Yang X; Zhang Y; Xiong R
    Nanoscale Adv; 2020 Mar; 2(3):1309-1317. PubMed ID: 36133072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antiferromagnetic skyrmion repulsion based artificial neuron device.
    Bindal N; Ian CAC; Lew WS; Kaushik BK
    Nanotechnology; 2021 Mar; 32(21):. PubMed ID: 33530074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skyrmion based majority logic gate by voltage controlled magnetic anisotropy in a nanomagnetic device.
    Paikaray B; Kuchibhotla M; Haldar A; Murapaka C
    Nanotechnology; 2023 Mar; 34(22):. PubMed ID: 36827697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Device geometry dependent deterministic skyrmion generation from a skyrmionium.
    Dash A; Ojha B; Mohanty S; Moharana AK; Bedanta S
    Nanotechnology; 2023 Feb; 34(18):. PubMed ID: 36716477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental demonstration of skyrmionic magnetic tunnel junction at room temperature.
    Li S; Du A; Wang Y; Wang X; Zhang X; Cheng H; Cai W; Lu S; Cao K; Pan B; Lei N; Kang W; Liu J; Fert A; Hou Z; Zhao W
    Sci Bull (Beijing); 2022 Apr; 67(7):691-699. PubMed ID: 36546133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strain-mediated multistate skyrmion for neuron devices.
    Shi S; Zhao Y; Sun J; Yu G; Zhou H; Wang J
    Nanoscale; 2024 Jun; 16(25):12013-12020. PubMed ID: 38805240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled Individual Skyrmion Nucleation at Artificial Defects Formed by Ion Irradiation.
    Fallon K; Hughes S; Zeissler K; Legrand W; Ajejas F; Maccariello D; McFadzean S; Smith W; McGrouther D; Collin S; Reyren N; Cros V; Marrows CH; McVitie S
    Small; 2020 Apr; 16(13):e1907450. PubMed ID: 32141234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creation of Magnetic Skyrmion Bubble Lattices by Ultrafast Laser in Ultrathin Films.
    Je SG; Vallobra P; Srivastava T; Rojas-Sánchez JC; Pham TH; Hehn M; Malinowski G; Baraduc C; Auffret S; Gaudin G; Mangin S; Béa H; Boulle O
    Nano Lett; 2018 Nov; 18(11):7362-7371. PubMed ID: 30295499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single skyrmion true random number generator using local dynamics and interaction between skyrmions.
    Wang K; Zhang Y; Bheemarasetty V; Zhou S; Ying SC; Xiao G
    Nat Commun; 2022 Feb; 13(1):722. PubMed ID: 35132085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micromagnetic Design of Skyrmionic Materials and Chiral Magnetic Configurations in Patterned Nanostructures for Neuromorphic and Qubit Applications.
    One RA; Mican S; Cimpoeșu AG; Joldos M; Tetean R; Tiușan CV
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible Transformation between Isolated Skyrmions and Bimerons.
    Ohara K; Zhang X; Chen Y; Kato S; Xia J; Ezawa M; Tretiakov OA; Hou Z; Zhou Y; Zhao G; Yang J; Liu X
    Nano Lett; 2022 Nov; 22(21):8559-8566. PubMed ID: 36259745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.