These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 34852425)
1. Thermal safety margins of plant leaves across biomes under a heatwave. Kitudom N; Fauset S; Zhou Y; Fan Z; Li M; He M; Zhang S; Xu K; Lin H Sci Total Environ; 2022 Feb; 806(Pt 2):150416. PubMed ID: 34852425 [TBL] [Abstract][Full Text] [Related]
2. High heat tolerance, evaporative cooling, and stomatal decoupling regulate canopy temperature and their safety margins in three European oak species. Gauthey A; Kahmen A; Limousin JM; Vilagrosa A; Didion-Gency M; Mas E; Milano A; Tunas A; Grossiord C Glob Chang Biol; 2024 Aug; 30(8):e17439. PubMed ID: 39092538 [TBL] [Abstract][Full Text] [Related]
3. Range size and growth temperature influence Eucalyptus species responses to an experimental heatwave. Aspinwall MJ; Pfautsch S; Tjoelker MG; Vårhammar A; Possell M; Drake JE; Reich PB; Tissue DT; Atkin OK; Rymer PD; Dennison S; Van Sluyter SC Glob Chang Biol; 2019 May; 25(5):1665-1684. PubMed ID: 30746837 [TBL] [Abstract][Full Text] [Related]
5. Leaf heat tolerance of 147 tropical forest species varies with elevation and leaf functional traits, but not with phylogeny. Slot M; Cala D; Aranda J; Virgo A; Michaletz ST; Winter K Plant Cell Environ; 2021 Jul; 44(7):2414-2427. PubMed ID: 33817813 [TBL] [Abstract][Full Text] [Related]
6. Repeated extreme heatwaves result in higher leaf thermal tolerances and greater safety margins. Ahrens CW; Challis A; Byrne M; Leigh A; Nicotra AB; Tissue D; Rymer P New Phytol; 2021 Nov; 232(3):1212-1225. PubMed ID: 34292598 [TBL] [Abstract][Full Text] [Related]
7. Handling the heat - photosynthetic thermal stress in tropical trees. Tarvainen L; Wittemann M; Mujawamariya M; Manishimwe A; Zibera E; Ntirugulirwa B; Ract C; Manzi OJL; Andersson MX; Spetea C; Nsabimana D; Wallin G; Uddling J New Phytol; 2022 Jan; 233(1):236-250. PubMed ID: 34655491 [TBL] [Abstract][Full Text] [Related]
8. Leaf thermotolerance in dry tropical forest tree species: relationships with leaf traits and effects of drought. Sastry A; Guha A; Barua D AoB Plants; 2018 Feb; 10(1):plx070. PubMed ID: 29354258 [TBL] [Abstract][Full Text] [Related]
11. Thermal optima of gross primary productivity are closely aligned with mean air temperatures across Australian wooded ecosystems. Bennett AC; Arndt SK; Bennett LT; Knauer J; Beringer J; Griebel A; Hinko-Najera N; Liddell MJ; Metzen D; Pendall E; Silberstein RP; Wardlaw TJ; Woodgate W; Haverd V Glob Chang Biol; 2021 Oct; 27(19):4727-4744. PubMed ID: 34165839 [TBL] [Abstract][Full Text] [Related]
12. Photosynthetic quantum efficiency in south-eastern Amazonian trees may be already affected by climate change. Tiwari R; Gloor E; da Cruz WJA; Schwantes Marimon B; Marimon-Junior BH; Reis SM; de Souza IA; Krause HG; Slot M; Winter K; Ashley D; Béu RG; Borges CS; Da Cunha M; Fauset S; Ferreira LDS; Gonçalves MDA; Lopes TT; Marques EQ; Mendonça NG; Mendonça NG; Noleto PT; de Oliveira CHL; Oliveira MA; Pireda S; Dos Santos Prestes NCC; Santos DM; Santos EB; da Silva ELS; de Souza IA; de Souza LJ; Vitória AP; Foyer CH; Galbraith D Plant Cell Environ; 2021 Jul; 44(7):2428-2439. PubMed ID: 32339294 [TBL] [Abstract][Full Text] [Related]
13. Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees. Kenzo T; Inoue Y; Yoshimura M; Yamashita M; Tanaka-Oda A; Ichie T Oecologia; 2015 Jan; 177(1):191-202. PubMed ID: 25362582 [TBL] [Abstract][Full Text] [Related]
14. Can leaf net photosynthesis acclimate to rising and more variable temperatures? Vico G; Way DA; Hurry V; Manzoni S Plant Cell Environ; 2019 Jun; 42(6):1913-1928. PubMed ID: 30706948 [TBL] [Abstract][Full Text] [Related]
15. No evidence of canopy-scale leaf thermoregulation to cool leaves below air temperature across a range of forest ecosystems. Still CJ; Page G; Rastogi B; Griffith DM; Aubrecht DM; Kim Y; Burns SP; Hanson CV; Kwon H; Hawkins L; Meinzer FC; Sevanto S; Roberts D; Goulden M; Pau S; Detto M; Helliker B; Richardson AD Proc Natl Acad Sci U S A; 2022 Sep; 119(38):e2205682119. PubMed ID: 36095211 [TBL] [Abstract][Full Text] [Related]
16. Quantifying the biophysical effects of forests on local air temperature using a novel three-layered land surface energy balance model. Su Y; Liu L; Wu J; Chen X; Shang J; Ciais P; Zhou G; Lafortezza R; Wang Y; Yuan W; Wang Y; Zhang H; Huang G; Huang N Environ Int; 2019 Nov; 132():105080. PubMed ID: 31465951 [TBL] [Abstract][Full Text] [Related]
17. Correlations between photosynthetic heat tolerance and leaf anatomy and climatic niche in Asian mangrove trees. Li X; Wen Y; Chen X; Qie Y; Cao KF; Wee AKS Plant Biol (Stuttg); 2022 Oct; 24(6):960-966. PubMed ID: 35962602 [TBL] [Abstract][Full Text] [Related]
19. In situ temperature response of photosynthesis of 42 tree and liana species in the canopy of two Panamanian lowland tropical forests with contrasting rainfall regimes. Slot M; Winter K New Phytol; 2017 May; 214(3):1103-1117. PubMed ID: 28211583 [TBL] [Abstract][Full Text] [Related]
20. Long-term drought effects on the thermal sensitivity of Amazon forest trees. Docherty EM; Gloor E; Sponchiado D; Gilpin M; Pinto CAD; Junior HM; Coughlin I; Ferreira L; Junior JAS; da Costa ACL; Meir P; Galbraith D Plant Cell Environ; 2023 Jan; 46(1):185-198. PubMed ID: 36230004 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]