These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34852490)

  • 1. Ionic screening in bulk and under confinement.
    Zeman J; Kondrat S; Holm C
    J Chem Phys; 2021 Nov; 155(20):204501. PubMed ID: 34852490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bulk ionic screening lengths from extremely large-scale molecular dynamics simulations.
    Zeman J; Kondrat S; Holm C
    Chem Commun (Camb); 2020 Dec; 56(100):15635-15638. PubMed ID: 33283802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Primitive model electrolytes in the near and far field: Decay lengths from DFT and simulations.
    Cats P; Evans R; Härtel A; van Roij R
    J Chem Phys; 2021 Mar; 154(12):124504. PubMed ID: 33810662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Underscreening and hidden ion structures in large scale simulations of concentrated electrolytes.
    Krucker-Velasquez E; Swan JW
    J Chem Phys; 2021 Oct; 155(13):134903. PubMed ID: 34624965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Electrostatic Screening Length in Concentrated Electrolytes Increases with Concentration.
    Smith AM; Lee AA; Perkin S
    J Phys Chem Lett; 2016 Jun; 7(12):2157-63. PubMed ID: 27216986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-range electrostatic screening in ionic liquids.
    Gebbie MA; Dobbs HA; Valtiner M; Israelachvili JN
    Proc Natl Acad Sci U S A; 2015 Jun; 112(24):7432-7. PubMed ID: 26040001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interference of electrical double layers: Confinement effects on structure, dynamics, and screening of ionic liquids.
    Park S; McDaniel JG
    J Chem Phys; 2020 Feb; 152(7):074709. PubMed ID: 32087657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monolayer to Bilayer Structural Transition in Confined Pyrrolidinium-Based Ionic Liquids.
    Smith AM; Lovelock KR; Gosvami NN; Licence P; Dolan A; Welton T; Perkin S
    J Phys Chem Lett; 2013 Feb; 4(3):378-82. PubMed ID: 26281727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionic liquids behave as dilute electrolyte solutions.
    Gebbie MA; Valtiner M; Banquy X; Fox ET; Henderson WA; Israelachvili JN
    Proc Natl Acad Sci U S A; 2013 Jun; 110(24):9674-9. PubMed ID: 23716690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfacial structure and structural forces in mixtures of ionic liquid with a polar solvent.
    Coles SW; Smith AM; Fedorov MV; Hausen F; Perkin S
    Faraday Discuss; 2018 Jan; 206():427-442. PubMed ID: 28933495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scaling Analysis of the Screening Length in Concentrated Electrolytes.
    Lee AA; Perez-Martinez CS; Smith AM; Perkin S
    Phys Rev Lett; 2017 Jul; 119(2):026002. PubMed ID: 28753344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absence of anomalous underscreening in highly concentrated aqueous electrolytes confined between smooth silica surfaces.
    Kumar S; Cats P; Alotaibi MB; Ayirala SC; Yousef AA; van Roij R; Siretanu I; Mugele F
    J Colloid Interface Sci; 2022 Sep; 622():819-827. PubMed ID: 35561602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Forces in Ionic Liquids: The Role of Ionic Size Asymmetry.
    de Souza JP; Pivnic K; Bazant MZ; Urbakh M; Kornyshev AA
    J Phys Chem B; 2022 Feb; 126(6):1242-1253. PubMed ID: 35134297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microphase separation and the formation of ion conductivity channels in poly(ionic liquid)s: A coarse-grained molecular dynamics study.
    Weyman A; Bier M; Holm C; Smiatek J
    J Chem Phys; 2018 May; 148(19):193824. PubMed ID: 30307256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colloidal Systems in Concentrated Electrolyte Solutions Exhibit Re-entrant Long-Range Electrostatic Interactions due to Underscreening.
    Yuan H; Deng W; Zhu X; Liu G; Craig VSJ
    Langmuir; 2022 May; 38(19):6164-6173. PubMed ID: 35512818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition from non-monotonic to monotonic electrical diffuse layers: impact of confinement on ionic liquids.
    Yochelis A
    Phys Chem Chem Phys; 2014 Feb; 16(7):2836-41. PubMed ID: 24419152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monolayer and bilayer structures in ionic liquids and their mixtures confined to nano-films.
    Smith AM; Lovelock KR; Perkin S
    Faraday Discuss; 2013; 167():279-92. PubMed ID: 24640496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screening Lengths in Ionic Fluids.
    Coupette F; Lee AA; Härtel A
    Phys Rev Lett; 2018 Aug; 121(7):075501. PubMed ID: 30169089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrotunable lubricity with ionic liquids: the influence of nanoscale roughness.
    David A; Fajardo OY; Kornyshev AA; Urbakh M; Bresme F
    Faraday Discuss; 2017 Jul; 199():279-297. PubMed ID: 28440374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.