These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 34852500)

  • 1. Adaptive compound control based on generalized Bouc-Wen inverse hysteresis modeling in piezoelectric actuators.
    Zhang Q; Gao Y; Li Q; Yin D
    Rev Sci Instrum; 2021 Nov; 92(11):115004. PubMed ID: 34852500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Compound Control Based on the Piezo-Actuated Stage with Bouc-Wen Model.
    Fang J; Wang J; Li C; Zhong W; Long Z
    Micromachines (Basel); 2019 Dec; 10(12):. PubMed ID: 31817860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Feedforward Model of Piezoelectric Actuator for Precision Rapid Cutting.
    Zhong B; Liu S; Wang C; Jin Z; Sun L
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation of the modified control matrix for a selected unimorph deformable mirror to compensate the piezoelectric hysteresis effect using the inverse Bouc-Wen model.
    Aghababayee MA; Mosayebi M; Saghafifar H
    Appl Opt; 2022 Mar; 61(9):2293-2305. PubMed ID: 35333247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An enhanced Bouc-Wen model for characterizing rate-dependent hysteresis of piezoelectric actuators.
    Gan J; Zhang X
    Rev Sci Instrum; 2018 Nov; 89(11):115002. PubMed ID: 30501291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inverse compensation for hysteresis in piezoelectric actuator using an asymmetric rate-dependent model.
    Li W; Chen X; Li Z
    Rev Sci Instrum; 2013 Nov; 84(11):115003. PubMed ID: 24289430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time inverse hysteresis compensation of piezoelectric actuators with a modified Prandtl-Ishlinskii model.
    Gu GY; Yang MJ; Zhu LM
    Rev Sci Instrum; 2012 Jun; 83(6):065106. PubMed ID: 22755661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling and Compensation of Dynamic Hysteresis with Force-Voltage Coupling for Piezoelectric Actuators.
    Wang W; Wang J; Wang R; Chen Z; Han F; Lu K; Wang C; Xu Z; Ju B
    Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hysteresis Compensation for a Piezoelectric Actuator of Active Helicopter Rotor Using Compound Control.
    Zhou J; Dong L; Yang W
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Composite proportional-integral sliding mode control with feedforward control for cell puncture mechanism with piezoelectric actuation.
    Yu S; Xie M; Wu H; Ma J; Li Y; Gu H
    ISA Trans; 2022 May; 124():427-435. PubMed ID: 32081400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rate-Dependent Modeling of Piezoelectric Actuators for Nano Manipulation Based on Fractional Hammerstein Model.
    Yang L; Zhao Z; Zhang Y; Li D
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Bandwidth Hysteresis Compensation of Piezoelectric Actuators via Multilayer Feedforward Neural Network Based Inverse Hysteresis Modeling.
    Qin Y; Zhang Y; Duan H; Han J
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Piezoelectric Hysteresis Modeling of Hybrid Driven Three-Dimensional Elliptical Vibration Aided Cutting System Based on an Improved Flower Pollination Algorithm.
    Fu X; Gong H; Lu M; Zhou J; Lin J; Du Y; Zhou R
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compensation of Hysteresis on Piezoelectric Actuators Based on Tripartite PI Model.
    An D; Li H; Xu Y; Zhang L
    Micromachines (Basel); 2018 Jan; 9(2):. PubMed ID: 30393320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling and Compensation for Asymmetrical and Dynamic Hysteresis of Piezoelectric Actuators Using a Dynamic Delay Prandtl-Ishlinskii Model.
    Wang W; Han F; Chen Z; Wang R; Wang C; Lu K; Wang J; Ju B
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33467202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct identification of generalized Prandtl-Ishlinskii model inversion for asymmetric hysteresis compensation.
    Ko YR; Hwang Y; Chae M; Kim TH
    ISA Trans; 2017 Sep; 70():209-218. PubMed ID: 28716400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear Hysteresis Modeling of Piezoelectric Actuators Using a Generalized Bouc⁻Wen Model.
    Gan J; Zhang X
    Micromachines (Basel); 2019 Mar; 10(3):. PubMed ID: 30871100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling and compensation of hysteresis in piezoelectric actuators.
    Yu Z; Wu Y; Fang Z; Sun H
    Heliyon; 2020 May; 6(5):e03999. PubMed ID: 32509984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rate dependent direct inverse hysteresis compensation of piezoelectric micro-actuator used in dual-stage hard disk drive head positioning system.
    Rahman MA; Al Mamun A; Yao K
    Rev Sci Instrum; 2015 Aug; 86(8):085002. PubMed ID: 26329224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling and Inverse Compensation of Cross-Coupling Hysteresis in Piezoceramics under Multi-Input.
    Zhou X; Zhang L; Yang Z; Sun L
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33467768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.