These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34852629)

  • 1. Simulation of the objective occlusion effect induced by bone-conducted stimulation using a three-dimensional finite-element model of a human head.
    Xu H; Sgard F; Carillo K; Wagnac É; de Guise J
    J Acoust Soc Am; 2021 Nov; 150(5):4018. PubMed ID: 34852629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D finite element modeling of earplug-induced occlusion effect in the human ear.
    Bradshaw JJ; Brown MA; Bien AG; Gan RZ
    Med Eng Phys; 2024 Jul; 129():104192. PubMed ID: 38906574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical investigation of the earplug contribution to the low-frequency objective occlusion effect induced by bone-conducted stimulation.
    Carillo K; Doutres O; Sgard F
    J Acoust Soc Am; 2021 Sep; 150(3):2006. PubMed ID: 34598618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional finite element modeling of the human external ear: simulation study of the bone conduction occlusion effect.
    Brummund MK; Sgard F; Petit Y; Laville F
    J Acoust Soc Am; 2014 Mar; 135(3):1433-44. PubMed ID: 24606280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soft tissue conduction as a possible contributor to the limited attenuation provided by hearing protection devices.
    Chordekar S; Adelman C; Sohmer H; Kishon-Rabin L
    Noise Health; 2016; 18(84):274-279. PubMed ID: 27762257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards a practical methodology for assessment of the objective occlusion effect induced by earplugs.
    Saint-Gaudens H; Nélisse H; Sgard F; Doutres O
    J Acoust Soc Am; 2022 Jun; 151(6):4086. PubMed ID: 35778167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A finite element model to predict the double hearing protector effect on an in-house acoustic test fixture.
    Luan Y; Sgard F; Nélisse H; Doutres O
    J Acoust Soc Am; 2022 Mar; 151(3):1860. PubMed ID: 35364932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical investigation of the low frequency fundamental mechanism of the objective occlusion effect induced by bone-conducted stimulation.
    Carillo K; Doutres O; Sgard F
    J Acoust Soc Am; 2020 May; 147(5):3476. PubMed ID: 32486794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of the ear canal motion on the impedance boundary conditions in models of the occlusion effect.
    Kersten S; Sgard F; Vorländer M
    J Acoust Soc Am; 2024 Jan; 155(1):56-67. PubMed ID: 38174970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of the occlusion effect induced by earplugs using quasi perfect broadband absorption.
    Carillo K; Sgard F; Dazel O; Doutres O
    Sci Rep; 2022 Sep; 12(1):15336. PubMed ID: 36097159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional finite element modeling of human ear for sound transmission.
    Gan RZ; Feng B; Sun Q
    Ann Biomed Eng; 2004 Jun; 32(6):847-59. PubMed ID: 15255215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of the power transmission of bone-conducted sound in a finite-element model of the human head.
    Chang Y; Kim N; Stenfelt S
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1741-1755. PubMed ID: 30019294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element modelling of sound transmission from outer to inner ear.
    Areias B; Santos C; Natal Jorge RM; Gentil F; Parente MP
    Proc Inst Mech Eng H; 2016 Nov; 230(11):999-1007. PubMed ID: 27591576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A finite element model to predict the sound attenuation of earplugs in an acoustical test fixture.
    Viallet G; Sgard F; Laville F; Boutin J
    J Acoust Soc Am; 2014 Sep; 136(3):1269. PubMed ID: 25190400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sound localization in the lizard using internally coupled ears: A finite-element approach.
    Livens P; Muyshondt PGG; Dirckx JJJ
    Hear Res; 2019 Jul; 378():23-32. PubMed ID: 30704801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of model definitions and parameter values in finite element modeling of human middle ear mechanics.
    De Greef D; Pires F; Dirckx JJ
    Hear Res; 2017 Feb; 344():195-206. PubMed ID: 27915026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Protection Mechanisms to Blast Overpressure for Personal Hearing Protection Devices - Biomechanical Measurement and Computational Modeling.
    Gan RZ; Leckness K; Smith K; Ji XD
    Mil Med; 2019 Mar; 184(Suppl 1):251-260. PubMed ID: 30901470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphologic clustering of earcanals using deep learning algorithm to design artificial ears dedicated to earplug attenuation measurement.
    Poissenot-Arrigoni B; Law CH; Berbiche D; Sgard F; Doutres O
    J Acoust Soc Am; 2022 Dec; 152(6):3155. PubMed ID: 36586832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-laser measurement and finite element modeling of human tympanic membrane motion under blast exposure.
    Jiang S; Smith K; Gan RZ
    Hear Res; 2019 Jul; 378():43-52. PubMed ID: 30630647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The development of a whole-head human finite-element model for simulation of the transmission of bone-conducted sound.
    Chang Y; Kim N; Stenfelt S
    J Acoust Soc Am; 2016 Sep; 140(3):1635. PubMed ID: 27914383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.