BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34853037)

  • 1. Are CRISPR Screens Providing the Next Generation of Therapeutic Targets?
    Vazquez F; Sellers WR
    Cancer Res; 2021 Dec; 81(23):5806-5809. PubMed ID: 34853037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas9-Based Positive Screens for Cancer-Related Traits.
    Slipek NJ; Varshney J; Largaespada DA
    Methods Mol Biol; 2019; 1907():137-144. PubMed ID: 30542997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partial gene suppression improves identification of cancer vulnerabilities when CRISPR-Cas9 knockout is pan-lethal.
    Krill-Burger JM; Dempster JM; Borah AA; Paolella BR; Root DE; Golub TR; Boehm JS; Hahn WC; McFarland JM; Vazquez F; Tsherniak A
    Genome Biol; 2023 Aug; 24(1):192. PubMed ID: 37612728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.
    Behan FM; Iorio F; Picco G; Gonçalves E; Beaver CM; Migliardi G; Santos R; Rao Y; Sassi F; Pinnelli M; Ansari R; Harper S; Jackson DA; McRae R; Pooley R; Wilkinson P; van der Meer D; Dow D; Buser-Doepner C; Bertotti A; Trusolino L; Stronach EA; Saez-Rodriguez J; Yusa K; Garnett MJ
    Nature; 2019 Apr; 568(7753):511-516. PubMed ID: 30971826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide CRISPR screens for the identification of therapeutic targets for cancer treatment.
    Xue VW; Wong SCC; Cho WCS
    Expert Opin Ther Targets; 2020 Nov; 24(11):1147-1158. PubMed ID: 32893711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A CRISPR Platform for Targeted In Vivo Screens.
    Maranda V; Zhang Y; Vizeacoumar FS; Freywald A; Vizeacoumar FJ
    Methods Mol Biol; 2023; 2614():397-409. PubMed ID: 36587138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comprehensive clinically informed map of dependencies in cancer cells and framework for target prioritization.
    Pacini C; Duncan E; Gonçalves E; Gilbert J; Bhosle S; Horswell S; Karakoc E; Lightfoot H; Curry E; Muyas F; Bouaboula M; Pedamallu CS; Cortes-Ciriano I; Behan FM; Zalmas LP; Barthorpe A; Francies H; Rowley S; Pollard J; Beltrao P; Parts L; Iorio F; Garnett MJ
    Cancer Cell; 2024 Feb; 42(2):301-316.e9. PubMed ID: 38215750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New tools for old drugs: Functional genetic screens to optimize current chemotherapy.
    Gerhards NM; Rottenberg S
    Drug Resist Updat; 2018 Jan; 36():30-46. PubMed ID: 29499836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic lethality as an engine for cancer drug target discovery.
    Huang A; Garraway LA; Ashworth A; Weber B
    Nat Rev Drug Discov; 2020 Jan; 19(1):23-38. PubMed ID: 31712683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR-Cas13 System as a Promising and Versatile Tool for Cancer Diagnosis, Therapy, and Research.
    Palaz F; Kalkan AK; Can Ö; Demir AN; Tozluyurt A; Özcan A; Ozsoz M
    ACS Synth Biol; 2021 Jun; 10(6):1245-1267. PubMed ID: 34037380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hallmarks of cancer: The CRISPR generation.
    Moses C; Garcia-Bloj B; Harvey AR; Blancafort P
    Eur J Cancer; 2018 Apr; 93():10-18. PubMed ID: 29433054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR screen in mechanism and target discovery for cancer immunotherapy.
    Liu D; Zhao X; Tang A; Xu X; Liu S; Zha L; Ma W; Zheng J; Shi M
    Biochim Biophys Acta Rev Cancer; 2020 Aug; 1874(1):188378. PubMed ID: 32413572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells.
    Meyers RM; Bryan JG; McFarland JM; Weir BA; Sizemore AE; Xu H; Dharia NV; Montgomery PG; Cowley GS; Pantel S; Goodale A; Lee Y; Ali LD; Jiang G; Lubonja R; Harrington WF; Strickland M; Wu T; Hawes DC; Zhivich VA; Wyatt MR; Kalani Z; Chang JJ; Okamoto M; Stegmaier K; Golub TR; Boehm JS; Vazquez F; Root DE; Hahn WC; Tsherniak A
    Nat Genet; 2017 Dec; 49(12):1779-1784. PubMed ID: 29083409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PICKLES: the database of pooled in-vitro CRISPR knockout library essentiality screens.
    Lenoir WF; Lim TL; Hart T
    Nucleic Acids Res; 2018 Jan; 46(D1):D776-D780. PubMed ID: 29077937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Agreement between two large pan-cancer CRISPR-Cas9 gene dependency data sets.
    Dempster JM; Pacini C; Pantel S; Behan FM; Green T; Krill-Burger J; Beaver CM; Younger ST; Zhivich V; Najgebauer H; Allen F; Gonçalves E; Shepherd R; Doench JG; Yusa K; Vazquez F; Parts L; Boehm JS; Golub TR; Hahn WC; Root DE; Garnett MJ; Tsherniak A; Iorio F
    Nat Commun; 2019 Dec; 10(1):5817. PubMed ID: 31862961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the genetic space of the DNA damage response for cancer therapy through CRISPR-based screens.
    Wilson J; Loizou JI
    Mol Oncol; 2022 Nov; 16(21):3778-3791. PubMed ID: 35708734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplex enCas12a screens detect functional buffering among paralogs otherwise masked in monogenic Cas9 knockout screens.
    Dede M; McLaughlin M; Kim E; Hart T
    Genome Biol; 2020 Oct; 21(1):262. PubMed ID: 33059726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inferring cancer dependencies on metabolic genes from large-scale genetic screens.
    Lagziel S; Lee WD; Shlomi T
    BMC Biol; 2019 Apr; 17(1):37. PubMed ID: 31039782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-Wide CRISPR/Cas9 Screening for Identification of Cancer Genes in Cell Lines.
    Adelmann CH; Wang T; Sabatini DM; Lander ES
    Methods Mol Biol; 2019; 1907():125-136. PubMed ID: 30542996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pooled CRISPR-Based Genetic Screens in Mammalian Cells.
    Chan K; Tong AHY; Brown KR; Mero P; Moffat J
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31545321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.