These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 34853152)

  • 41. Biased signaling pathways in β2-adrenergic receptor characterized by 19F-NMR.
    Liu JJ; Horst R; Katritch V; Stevens RC; Wüthrich K
    Science; 2012 Mar; 335(6072):1106-10. PubMed ID: 22267580
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Screening β-arrestin recruitment for the identification of natural ligands for orphan G-protein-coupled receptors.
    Southern C; Cook JM; Neetoo-Isseljee Z; Taylor DL; Kettleborough CA; Merritt A; Bassoni DL; Raab WJ; Quinn E; Wehrman TS; Davenport AP; Brown AJ; Green A; Wigglesworth MJ; Rees S
    J Biomol Screen; 2013 Jun; 18(5):599-609. PubMed ID: 23396314
    [TBL] [Abstract][Full Text] [Related]  

  • 43. G-protein-coupled receptor (GPCR) kinase phosphorylation and beta-arrestin recruitment regulate the constitutive signaling activity of the human cytomegalovirus US28 GPCR.
    Miller WE; Houtz DA; Nelson CD; Kolattukudy PE; Lefkowitz RJ
    J Biol Chem; 2003 Jun; 278(24):21663-71. PubMed ID: 12668664
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Heterologous phosphorylation-induced formation of a stability lock permits regulation of inactive receptors by β-arrestins.
    Tóth AD; Prokop S; Gyombolai P; Várnai P; Balla A; Gurevich VV; Hunyady L; Turu G
    J Biol Chem; 2018 Jan; 293(3):876-892. PubMed ID: 29146594
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Functional selectivity profiling of the angiotensin II type 1 receptor using pathway-wide BRET signaling sensors.
    Namkung Y; LeGouill C; Kumar S; Cao Y; Teixeira LB; Lukasheva V; Giubilaro J; Simões SC; Longpré JM; Devost D; Hébert TE; Piñeyro G; Leduc R; Costa-Neto CM; Bouvier M; Laporte SA
    Sci Signal; 2018 Dec; 11(559):. PubMed ID: 30514808
    [TBL] [Abstract][Full Text] [Related]  

  • 46. G-Protein/β-Arrestin-Linked Fluctuating Network of G-Protein-Coupled Receptors for Predicting Drug Efficacy and Bias Using Short-Term Molecular Dynamics Simulation.
    Ichikawa O; Fujimoto K; Yamada A; Okazaki S; Yamazaki K
    PLoS One; 2016; 11(5):e0155816. PubMed ID: 27187591
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular determinants underlying the formation of stable intracellular G protein-coupled receptor-beta-arrestin complexes after receptor endocytosis*.
    Oakley RH; Laporte SA; Holt JA; Barak LS; Caron MG
    J Biol Chem; 2001 Jun; 276(22):19452-60. PubMed ID: 11279203
    [TBL] [Abstract][Full Text] [Related]  

  • 48.
    Wang J; Pani B; Gokhan I; Xiong X; Kahsai AW; Jiang H; Ahn S; Lefkowitz RJ; Rockman HA
    Mol Pharmacol; 2021 Dec; 100(6):568-579. PubMed ID: 34561298
    [No Abstract]   [Full Text] [Related]  

  • 49. Arrestin interactions with G protein-coupled receptors. Direct binding studies of wild type and mutant arrestins with rhodopsin, beta 2-adrenergic, and m2 muscarinic cholinergic receptors.
    Gurevich VV; Dion SB; Onorato JJ; Ptasienski J; Kim CM; Sterne-Marr R; Hosey MM; Benovic JL
    J Biol Chem; 1995 Jan; 270(2):720-31. PubMed ID: 7822302
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of arrestin conformation on the recruitment of c-Raf1, MEK1, and ERK1/2 activation.
    Coffa S; Breitman M; Hanson SM; Callaway K; Kook S; Dalby KN; Gurevich VV
    PLoS One; 2011; 6(12):e28723. PubMed ID: 22174878
    [TBL] [Abstract][Full Text] [Related]  

  • 51. S-nitrosylation of beta-arrestin regulates beta-adrenergic receptor trafficking.
    Ozawa K; Whalen EJ; Nelson CD; Mu Y; Hess DT; Lefkowitz RJ; Stamler JS
    Mol Cell; 2008 Aug; 31(3):395-405. PubMed ID: 18691971
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular determinants on extracellular loop domains that dictate interaction between β-arrestin and human APJ receptor.
    Ashokan A; Kameswaran M; Aradhyam GK
    FEBS Lett; 2019 Mar; 593(6):634-643. PubMed ID: 30801688
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dual role of the beta2-adrenergic receptor C terminus for the binding of beta-arrestin and receptor internalization.
    Krasel C; Zabel U; Lorenz K; Reiner S; Al-Sabah S; Lohse MJ
    J Biol Chem; 2008 Nov; 283(46):31840-8. PubMed ID: 18801735
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Noncanonical scaffolding of G
    Smith JS; Pack TF; Inoue A; Lee C; Zheng K; Choi I; Eiger DS; Warman A; Xiong X; Ma Z; Viswanathan G; Levitan IM; Rochelle LK; Staus DP; Snyder JC; Kahsai AW; Caron MG; Rajagopal S
    Science; 2021 Mar; 371(6534):. PubMed ID: 33479120
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Detection of β-Arrestin-Mediated G Protein-Coupled Receptor Ubiquitination Using BRET.
    Nagi K; Shenoy SK
    Methods Mol Biol; 2019; 1957():93-104. PubMed ID: 30919349
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interaction with beta-arrestin determines the difference in internalization behavor between beta1- and beta2-adrenergic receptors.
    Shiina T; Kawasaki A; Nagao T; Kurose H
    J Biol Chem; 2000 Sep; 275(37):29082-90. PubMed ID: 10862778
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A new inhibitor of the β-arrestin/AP2 endocytic complex reveals interplay between GPCR internalization and signalling.
    Beautrait A; Paradis JS; Zimmerman B; Giubilaro J; Nikolajev L; Armando S; Kobayashi H; Yamani L; Namkung Y; Heydenreich FM; Khoury E; Audet M; Roux PP; Veprintsev DB; Laporte SA; Bouvier M
    Nat Commun; 2017 Apr; 8():15054. PubMed ID: 28416805
    [TBL] [Abstract][Full Text] [Related]  

  • 58. beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor.
    Shenoy SK; Drake MT; Nelson CD; Houtz DA; Xiao K; Madabushi S; Reiter E; Premont RT; Lichtarge O; Lefkowitz RJ
    J Biol Chem; 2006 Jan; 281(2):1261-73. PubMed ID: 16280323
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A novel luminescence-based β-arrestin recruitment assay for unmodified receptors.
    Hauge Pedersen M; Pham J; Mancebo H; Inoue A; Asher WB; Javitch JA
    J Biol Chem; 2021; 296():100503. PubMed ID: 33684444
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Function and dynamics of the intrinsically disordered carboxyl terminus of β2 adrenergic receptor.
    Heng J; Hu Y; Pérez-Hernández G; Inoue A; Zhao J; Ma X; Sun X; Kawakami K; Ikuta T; Ding J; Yang Y; Zhang L; Peng S; Niu X; Li H; Guixà-González R; Jin C; Hildebrand PW; Chen C; Kobilka BK
    Nat Commun; 2023 Apr; 14(1):2005. PubMed ID: 37037825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.