BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 34853492)

  • 1. A Milestone in the Chemical Synthesis of Fe
    Castellanos-Rubio I; Arriortua O; Iglesias-Rojas D; Barón A; Rodrigo I; Marcano L; Garitaonandia JS; Orue I; Fdez-Gubieda ML; Insausti M
    Chem Mater; 2021 Nov; 33(22):8693-8704. PubMed ID: 34853492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing the magnetic and inductive heating properties of Fe
    Mohapatra J; Xing M; Beatty J; Elkins J; Seda T; Mishra SR; Liu JP
    Nanotechnology; 2020 Apr; 31(27):275706. PubMed ID: 32224519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Outstanding heat loss via nano-octahedra above 20 nm in size: from wustite-rich nanoparticles to magnetite single-crystals.
    Castellanos-Rubio I; Rodrigo I; Munshi R; Arriortua O; Garitaonandia JS; Martinez-Amesti A; Plazaola F; Orue I; Pralle A; Insausti M
    Nanoscale; 2019 Sep; 11(35):16635-16649. PubMed ID: 31460555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shell-mediated control of surface chemistry of highly stoichiometric magnetite nanoparticles.
    Lavorato GC; Rubert AA; Xing Y; Das R; Robles J; Litterst FJ; Baggio-Saitovitch E; Phan MH; Srikanth H; Vericat C; Fonticelli MH
    Nanoscale; 2020 Jul; 12(25):13626-13636. PubMed ID: 32558841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Reproducible Hyperthermia Response in Water, Agar, and Cellular Environment by Discretely PEGylated Magnetite Nanoparticles.
    Castellanos-Rubio I; Rodrigo I; Olazagoitia-Garmendia A; Arriortua O; Gil de Muro I; Garitaonandia JS; Bilbao JR; Fdez-Gubieda ML; Plazaola F; Orue I; Castellanos-Rubio A; Insausti M
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):27917-27929. PubMed ID: 32464047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shaping Up Zn-Doped Magnetite Nanoparticles from Mono- and Bimetallic Oleates: The Impact of Zn Content, Fe Vacancies, and Morphology on Magnetic Hyperthermia Performance.
    Castellanos-Rubio I; Arriortua O; Marcano L; Rodrigo I; Iglesias-Rojas D; Barón A; Olazagoitia-Garmendia A; Olivi L; Plazaola F; Fdez-Gubieda ML; Castellanos-Rubio A; Garitaonandia JS; Orue I; Insausti M
    Chem Mater; 2021 May; 33(9):3139-3154. PubMed ID: 34556898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of ultrasonic-assisted approach for synthesizing a highly stable biocompatible bismuth-coated iron oxide nanoparticles using a face-centered central composite design.
    Braim FS; Razak NNANA; Aziz AA; Dheyab MA; Ismael LQ
    Ultrason Sonochem; 2023 May; 95():106371. PubMed ID: 36934677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-pot preparation of hyaluronic acid-coated iron oxide nanoparticles for magnetic hyperthermia therapy and targeting CD44-overexpressing cancer cells.
    Soleymani M; Velashjerdi M; Shaterabadi Z; Barati A
    Carbohydr Polym; 2020 Jun; 237():116130. PubMed ID: 32241421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Magneto-Luminescent Nanosystems based on Rhodamine-Loaded Magnetite Nanoparticles with Optimized Heating Power and Ideal Thermosensitive Fluorescence.
    Castellanos-Rubio I; Barón A; Luis-Lizarraga O; Rodrigo I; de Muro IG; Orue I; Martínez-Martínez V; Castellanos-Rubio A; López-Arbeloa F; Insausti M
    ACS Appl Mater Interfaces; 2022 Oct; 14(44):50033-44. PubMed ID: 36302136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size-selected Fe
    Efremova MV; Nalench YA; Myrovali E; Garanina AS; Grebennikov IS; Gifer PK; Abakumov MA; Spasova M; Angelakeris M; Savchenko AG; Farle M; Klyachko NL; Majouga AG; Wiedwald U
    Beilstein J Nanotechnol; 2018; 9():2684-2699. PubMed ID: 30416920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Temperature Magnetism as a Probe for Structural and Compositional Uniformity in Ligand-Capped Magnetite Nanoparticles.
    Kolen'ko YV; Bañobre-López M; Rodríguez-Abreu C; Carbó-Argibay E; Deepak FL; Petrovykh DY; Cerqueira MF; Kamali S; Kovnir K; Shtansky DV; Lebedev OI; Rivas J
    J Phys Chem C Nanomater Interfaces; 2014 Dec; 118(48):28322-28329. PubMed ID: 25506407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape-controlled fabrication of magnetite silver hybrid nanoparticles with high performance magnetic hyperthermia.
    Ding Q; Liu D; Guo D; Yang F; Pang X; Che R; Zhou N; Xie J; Sun J; Huang Z; Gu N
    Biomaterials; 2017 Apr; 124():35-46. PubMed ID: 28187393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zn doped iron oxide nanoparticles with high magnetization and photothermal efficiency for cancer treatment.
    Kasparis G; Sangnier AP; Wang L; Efstathiou C; LaGrow AP; Sergides A; Wilhelm C; Thanh NTK
    J Mater Chem B; 2023 Jan; 11(4):787-801. PubMed ID: 36472454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal and magnetic properties of chitosan-iron oxide nanoparticles.
    Soares PI; Machado D; Laia C; Pereira LC; Coutinho JT; Ferreira IM; Novo CM; Borges JP
    Carbohydr Polym; 2016 Sep; 149():382-90. PubMed ID: 27261762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of Fe3O4 nanoparticles with tunable and uniform size through simple thermal decomposition.
    Wang D; Ma Q; Yang P
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6432-8. PubMed ID: 22962760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia.
    Shah RR; Davis TP; Glover AL; Nikles DE; Brazel CS
    J Magn Magn Mater; 2015 Aug; 387():96-106. PubMed ID: 25960599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation between effects of the particle size and magnetic field strength on the magnetic hyperthermia efficiency of dextran-coated magnetite nanoparticles.
    Shaterabadi Z; Nabiyouni G; Soleymani M
    Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111274. PubMed ID: 32919638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zn- and (Mn, Zn)-substituted versus unsubstituted magnetite nanoparticles: structural, magnetic and hyperthermic properties.
    Jović Orsini N; Milić MM; Torres TE
    Nanotechnology; 2020 May; 31(22):225707. PubMed ID: 32066121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocompatible Magnetic Fluids of Co-Doped Iron Oxide Nanoparticles with Tunable Magnetic Properties.
    Dutz S; Buske N; Landers J; Gräfe C; Wende H; Clement JH
    Nanomaterials (Basel); 2020 May; 10(6):. PubMed ID: 32471031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic mesoporous bioactive glass for synergetic use in bone regeneration, hyperthermia treatment, and controlled drug delivery.
    Ur Rahman MS; Tahir MA; Noreen S; Yasir M; Ahmad I; Khan MB; Ali KW; Shoaib M; Bahadur A; Iqbal S
    RSC Adv; 2020 Jun; 10(36):21413-21419. PubMed ID: 35518733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.