These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 34853673)
1. Deep Learning-Based Detection and Diagnosis of Subarachnoid Hemorrhage. Gou X; He X J Healthc Eng; 2021; 2021():9639419. PubMed ID: 34853673 [TBL] [Abstract][Full Text] [Related]
2. Development and External Validation of a Deep Learning Algorithm to Identify and Localize Subarachnoid Hemorrhage on CT Scans. Thanellas A; Peura H; Lavinto M; Ruokola T; Vieli M; Staartjes VE; Winklhofer S; Serra C; Regli L; Korja M Neurology; 2023 Mar; 100(12):e1257-e1266. PubMed ID: 36639236 [TBL] [Abstract][Full Text] [Related]
3. Automatic subarachnoid space segmentation and hemorrhage detection in clinical head CT scans. Li YH; Zhang L; Hu QM; Li HW; Jia FC; Wu JH Int J Comput Assist Radiol Surg; 2012 Jul; 7(4):507-16. PubMed ID: 22081264 [TBL] [Abstract][Full Text] [Related]
4. A Fully Automated Pipeline Using Swin Transformers for Deep Learning-Based Blood Segmentation on Head Computed Tomography Scans After Aneurysmal Subarachnoid Hemorrhage. García-García S; Cepeda S; Arrese I; Sarabia R World Neurosurg; 2024 Oct; 190():e762-e773. PubMed ID: 39111661 [TBL] [Abstract][Full Text] [Related]
5. Evaluating Deep Learning Techniques for Detecting Aneurysmal Subarachnoid Hemorrhage: A Comparative Analysis of Convolutional Neural Network and Transfer Learning Models. Etli MU; Başarslan MS; Varol E; Sarıkaya H; Çakıcı YE; Öndüç GG; Bal F; Kayalar AE; Aykılıç Ö World Neurosurg; 2024 Jul; 187():e807-e813. PubMed ID: 38710407 [TBL] [Abstract][Full Text] [Related]
6. Deep learning-assisted identification and quantification of aneurysmal subarachnoid hemorrhage in non-contrast CT scans: Development and external validation of Hybrid 2D/3D UNet. Hu P; Zhou H; Yan T; Miu H; Xiao F; Zhu X; Shu L; Yang S; Jin R; Dou W; Ren B; Zhu L; Liu W; Zhang Y; Zeng K; Ye M; Lv S; Wu M; Deng G; Hu R; Zhan R; Chen Q; Zhang D; Zhu X Neuroimage; 2023 Oct; 279():120321. PubMed ID: 37574119 [TBL] [Abstract][Full Text] [Related]
7. Artificial Intelligence Trained by Deep Learning Can Improve Computed Tomography Diagnosis of Nontraumatic Subarachnoid Hemorrhage by Nonspecialists. Nishi T; Yamashiro S; Okumura S; Takei M; Tachibana A; Akahori S; Kaji M; Uekawa K; Amadatsu T Neurol Med Chir (Tokyo); 2021 Nov; 61(11):652-660. PubMed ID: 34526447 [TBL] [Abstract][Full Text] [Related]
8. Calibrated uncertainty estimation for interpretable proton computed tomography image correction using Bayesian deep learning. Nomura Y; Tanaka S; Wang J; Shirato H; Shimizu S; Xing L Phys Med Biol; 2021 Mar; 66(6):065029. PubMed ID: 33626513 [TBL] [Abstract][Full Text] [Related]
9. A reciprocal learning strategy for semisupervised medical image segmentation. Zeng X; Huang R; Zhong Y; Xu Z; Liu Z; Wang Y Med Phys; 2023 Jan; 50(1):163-177. PubMed ID: 35950367 [TBL] [Abstract][Full Text] [Related]
10. Exploring uncertainty measures in convolutional neural network for semantic segmentation of oral cancer images. Song B; Li S; Sunny S; Gurushanth K; Mendonca P; Mukhia N; Patrick S; Peterson T; Gurudath S; Raghavan S; Tsusennaro I; Leivon S; Kolur T; Shetty V; Bushan V; Ramesh R; Pillai V; Wilder-Smith P; Suresh A; Kuriakose MA; Birur P; Liang R J Biomed Opt; 2022 Nov; 27(11):. PubMed ID: 36329004 [TBL] [Abstract][Full Text] [Related]
11. Application of Imaging Examination Based on Deep Learning in the Diagnosis of Viral Senile Pneumonia. Deng X; Ge X; Xue Q; Liu H Contrast Media Mol Imaging; 2022; 2022():6964283. PubMed ID: 35694707 [TBL] [Abstract][Full Text] [Related]
12. Mortality Prediction of Patients with Subarachnoid Hemorrhage Using a Deep Learning Model Based on an Initial Brain CT Scan. García-García S; Cepeda S; Müller D; Mosteiro A; Torné R; Agudo S; de la Torre N; Arrese I; Sarabia R Brain Sci; 2023 Dec; 14(1):. PubMed ID: 38248225 [TBL] [Abstract][Full Text] [Related]
13. Prediction and Risk Assessment Models for Subarachnoid Hemorrhage: A Systematic Review on Case Studies. Sengupta J; Alzbutas R Biomed Res Int; 2022; 2022():5416726. PubMed ID: 35111845 [TBL] [Abstract][Full Text] [Related]
14. Nuclei instance segmentation from histopathology images using Bayesian dropout based deep learning. Gudhe NR; Kosma VM; Behravan H; Mannermaa A BMC Med Imaging; 2023 Oct; 23(1):162. PubMed ID: 37858043 [TBL] [Abstract][Full Text] [Related]
15. Dual-energy CT after peri-interventional subarachnoid haemorrhage: a feasibility study. Brockmann C; Scharf J; Nölte IS; Seiz M; Groden C; Brockmann MA Clin Neuroradiol; 2010 Dec; 20(4):231-5. PubMed ID: 21052614 [TBL] [Abstract][Full Text] [Related]
16. Hybrid 3D/2D Convolutional Neural Network for Hemorrhage Evaluation on Head CT. Chang PD; Kuoy E; Grinband J; Weinberg BD; Thompson M; Homo R; Chen J; Abcede H; Shafie M; Sugrue L; Filippi CG; Su MY; Yu W; Hess C; Chow D AJNR Am J Neuroradiol; 2018 Sep; 39(9):1609-1616. PubMed ID: 30049723 [TBL] [Abstract][Full Text] [Related]
17. Nontraumatic subarachnoid hemorrhage in the setting of negative cranial computed tomography results: external validation of a clinical and imaging prediction rule. Mark DG; Hung YY; Offerman SR; Rauchwerger AS; Reed ME; Chettipally U; Vinson DR; Ballard DW; Ann Emerg Med; 2013 Jul; 62(1):1-10.e1. PubMed ID: 23026788 [TBL] [Abstract][Full Text] [Related]
18. Automatic detection of the existence of subarachnoid hemorrhage from clinical CT images. Li Y; Wu J; Li H; Li D; Du X; Chen Z; Jia F; Hu Q J Med Syst; 2012 Jun; 36(3):1259-70. PubMed ID: 20827565 [TBL] [Abstract][Full Text] [Related]