These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34853947)

  • 1. Comparison of two methods of neutralization and wet air oxidation for treating wastewater spent caustic produced by oil refineries.
    Elmi R; Nejaei A; Farshi A; Ramazani ME; Alaie E
    Environ Monit Assess; 2021 Dec; 193(12):854. PubMed ID: 34853947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oil refinery hazardous effluents minimization by membrane filtration: An on-site pilot plant study.
    Santos B; Crespo JG; Santos MA; Velizarov S
    J Environ Manage; 2016 Oct; 181():762-769. PubMed ID: 27444721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing chemical oxygen demand removal from synthesized wastewater containing lignin by catalytic wet-air oxidation over CuO/Al2O3 catalysts.
    Sriprom P; Neramittagapong S; Lin C; Wantala K; Neramittagapong A; Grisdanurak N
    J Air Waste Manag Assoc; 2015 Jul; 65(7):828-36. PubMed ID: 26079556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Treatment of SBR after wet air oxidation of emulsification wastewater].
    Tang WW; Zeng XP; Gu GW
    Huan Jing Ke Xue; 2007 Sep; 28(9):1993-7. PubMed ID: 17990545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treatment of oilfield wastewater by combined process of micro-electrolysis, Fenton oxidation and coagulation.
    Zhang Z
    Water Sci Technol; 2017 Dec; 76(11-12):3278-3288. PubMed ID: 29236007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treatment of olefin plant spent caustic by combination of neutralization and Fenton reaction.
    Sheu SH; Weng HS
    Water Res; 2001 Jun; 35(8):2017-21. PubMed ID: 11337849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of steel slags in the heterogeneous Fenton process for decreasing the chemical oxygen demand of oil refinery wastewater.
    Heidari B; Soleimani M; Mirghaffari N
    Water Sci Technol; 2018 Oct; 78(5-6):1159-1167. PubMed ID: 30339540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron-catalyzed wet air oxidation of biomethanated distillery wastewater for enhanced biogas recovery.
    Bhoite GM; Vaidya PD
    J Environ Manage; 2018 Nov; 226():241-248. PubMed ID: 30121459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic and non-catalytic wet air oxidation of sodium dodecylbenzene sulfonate: kinetics and biodegradability enhancement.
    Suárez-Ojeda ME; Kim J; Carrera J; Metcalfe IS; Font J
    J Hazard Mater; 2007 Jun; 144(3):655-62. PubMed ID: 17363148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study of the treatment of ethylene plant spent caustic by neutralization and classical and advanced oxidation.
    Hawari A; Ramadan H; Abu-Reesh I; Ouederni M
    J Environ Manage; 2015 Mar; 151():105-12. PubMed ID: 25546845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pretreatment of apramycin wastewater by catalytic wet air oxidation.
    Yang SX; Feng YJ; Wan JF; Lin QY; Zhu WP; Jiang ZP
    J Environ Sci (China); 2005; 17(4):623-6. PubMed ID: 16158592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wet air oxidation as a pretreatment option for selective biodegradability enhancement and biogas generation potential from complex effluent.
    Padoley KV; Tembhekar PD; Saratchandra T; Pandit AB; Pandey RA; Mudliar SN
    Bioresour Technol; 2012 Sep; 120():157-64. PubMed ID: 22789827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of wet air oxidation (WAO) of alcaloide factory wastewater.
    Kunukcu YK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(4):793-803. PubMed ID: 15792300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pretreatment of Afyon alcaloide factory's wastewater by wet air oxidation (WAO).
    Kaçar Y; Alpay E; Ceylan VK
    Water Res; 2003 Mar; 37(5):1170-6. PubMed ID: 12553993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic wet air oxidation for the treatment of emulsifying wastewater.
    Zhao JF; Chen L; Lu YC; Tang WW
    J Environ Sci (China); 2005; 17(4):576-9. PubMed ID: 16158582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wet air oxidation of epoxy acrylate monomer industrial wastewater.
    Yang S; Liu Z; Huang X; Zhang B
    J Hazard Mater; 2010 Jun; 178(1-3):786-91. PubMed ID: 20207076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wet air oxidation induced enhanced biodegradability of distillery effluent.
    Malik SN; Saratchandra T; Tembhekar PD; Padoley KV; Mudliar SL; Mudliar SN
    J Environ Manage; 2014 Apr; 136():132-8. PubMed ID: 24607802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wet air oxidation of cresylic spent caustic - A model compound study over graphene oxide (GO) and ruthenium/GO catalysts.
    Barge AS; Vaidya PD
    J Environ Manage; 2018 Apr; 212():479-489. PubMed ID: 29459340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating photo-degradation of COD and TOC in petroleum refinery wastewater by using TiO
    Aljuboury DA; Palaniandy P; Abdul Aziz HB; Feroz S; Abu Amr SS
    Water Sci Technol; 2016 Sep; 74(6):1312-1325. PubMed ID: 27685961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treatment of petroleum refinery wastewater by distillation-assisted catalytic oxidation under low temperature and low pressure.
    Gao X; Li W; Fu F; Li D; Cao Z; Wang J
    Water Sci Technol; 2011; 63(11):2713-8. PubMed ID: 22049769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.