BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34854034)

  • 1. Electrochemical Impedance Spectroscopy as a Convenient Tool to Characterize Tethered Bilayer Membranes.
    Penkauskas T; Ambrulevičius F; Valinčius G
    Methods Mol Biol; 2022; 2402():31-59. PubMed ID: 34854034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical impedance spectrum reveals structural details of distribution of pores and defects in supported phospholipid bilayers.
    Ambrulevičius F; Valinčius G
    Bioelectrochemistry; 2022 Aug; 146():108092. PubMed ID: 35367931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation and finite element analysis of tethered bilayer lipid structures.
    Kwak KJ; Valincius G; Liao WC; Hu X; Wen X; Lee A; Yu B; Vanderah DJ; Lu W; Lee LJ
    Langmuir; 2010 Dec; 26(23):18199-208. PubMed ID: 20977245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tethered bilayer membranes as a complementary tool for functional and structural studies: The pyolysin case.
    Preta G; Jankunec M; Heinrich F; Griffin S; Sheldon IM; Valincius G
    Biochim Biophys Acta; 2016 Sep; 1858(9):2070-2080. PubMed ID: 27211243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Impact of an Anchoring Layer on the Formation of Tethered Bilayer Lipid Membranes on Silver Substrates.
    Aleknavičienė I; Talaikis M; Budvytyte R; Valincius G
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34833969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical impedance spectroscopy of tethered bilayer membranes.
    Valincius G; Meškauskas T; Ivanauskas F
    Langmuir; 2012 Jan; 28(1):977-90. PubMed ID: 22126190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical assessment of dielectric damage to phospholipid bilayers by amyloid β-Oligomers.
    Budvytyte R; Ambrulevičius F; Jankaityte E; Valincius G
    Bioelectrochemistry; 2022 Jun; 145():108091. PubMed ID: 35240464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effect of Cholesterol on the Dielectric Structure of Lipid Bilayers.
    Alobeedallah H; Cornell B; Coster H
    J Membr Biol; 2018 Feb; 251(1):153-161. PubMed ID: 29188314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme activity to augment the characterization of tethered bilayer membranes.
    Valincius G; McGillivray DJ; Febo-Ayala W; Vanderah DJ; Kasianowicz JJ; Lösche M
    J Phys Chem B; 2006 Jun; 110(21):10213-6. PubMed ID: 16722717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid impedance measurement of tethered bilayer lipid membrane biosensors.
    Mu X; Rairigh D; Liu X; Mason AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4796-9. PubMed ID: 22255411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A molecular toolkit for highly insulating tethered bilayer lipid membranes on various substrates.
    Atanasov V; Atanasova PP; Vockenroth IK; Knorr N; Köper I
    Bioconjug Chem; 2006; 17(3):631-7. PubMed ID: 16704200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AI-based atomic force microscopy image analysis allows to predict electrochemical impedance spectra of defects in tethered bilayer membranes.
    Raila T; Penkauskas T; Ambrulevičius F; Jankunec M; Meškauskas T; Valinčius G
    Sci Rep; 2022 Jan; 12(1):1127. PubMed ID: 35064137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tethered bilayer lipid membranes studied by simultaneous attenuated total reflectance infrared spectroscopy and electrochemical impedance spectroscopy.
    Erbe A; Bushby RJ; Evans SD; Jeuken LJ
    J Phys Chem B; 2007 Apr; 111(13):3515-24. PubMed ID: 17388505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and properties of tethered bilayer lipid membranes with unsaturated anchor molecules.
    Budvytyte R; Valincius G; Niaura G; Voiciuk V; Mickevicius M; Chapman H; Goh HZ; Shekhar P; Heinrich F; Shenoy S; Lösche M; Vanderah DJ
    Langmuir; 2013 Jul; 29(27):8645-56. PubMed ID: 23745652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The assembly and use of tethered bilayer lipid membranes (tBLMs).
    Cranfield C; Carne S; Martinac B; Cornell B
    Methods Mol Biol; 2015; 1232():45-53. PubMed ID: 25331126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of tethered bilayers by phospholipid exchange with vesicles.
    Budvytyte R; Mickevicius M; Vanderah DJ; Heinrich F; Valincius G
    Langmuir; 2013 Apr; 29(13):4320-7. PubMed ID: 23445262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium Ion Binding at the Lipid-Water Interface Alters the Ion Permeability of Phospholipid Bilayers.
    Deplazes E; Tafalla BD; Murphy C; White J; Cranfield CG; Garcia A
    Langmuir; 2021 Dec; 37(48):14026-14033. PubMed ID: 34784471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inerolysin and vaginolysin, the cytolysins implicated in vaginal dysbiosis, differently impair molecular integrity of phospholipid membranes.
    Ragaliauskas T; Plečkaitytė M; Jankunec M; Labanauskas L; Baranauskiene L; Valincius G
    Sci Rep; 2019 Jul; 9(1):10606. PubMed ID: 31337831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tethered lipid bilayers on electrolessly deposited gold for bioelectronic applications.
    Kohli N; Hassler BL; Parthasarathy L; Richardson RJ; Ofoli RY; Worden RM; Lee I
    Biomacromolecules; 2006 Dec; 7(12):3327-35. PubMed ID: 17154460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-plane homogeneity and lipid dynamics in tethered bilayer lipid membranes (tBLMs).
    Shenoy S; Moldovan R; Fitzpatrick J; Vanderah DJ; Deserno M; Lösche M
    Soft Matter; 2010; 2010(6):1263-1274. PubMed ID: 21572933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.