These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34854046)

  • 1. Surface-Enhanced Infrared Absorption Spectroscopy (SEIRAS) to Probe Interfacial Water in Floating Bilayer Lipid Membranes (fBLMs).
    Burdach K; Dziubak D; Sek S
    Methods Mol Biol; 2022; 2402():199-207. PubMed ID: 34854046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water Structure in the Submembrane Region of a Floating Lipid Bilayer: The Effect of an Ion Channel Formation and the Channel Blocker.
    Su Z; Juhaniewicz-Debinska J; Sek S; Lipkowski J
    Langmuir; 2020 Jan; 36(1):409-418. PubMed ID: 31815479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Interfacial Water on the Nanomechanical Properties of Negatively Charged Floating Bilayers Supported on Gold Electrodes.
    Juhaniewicz-Dębińska J; Konarzewska D; Sęk S
    Langmuir; 2019 Jul; 35(29):9422-9429. PubMed ID: 31241963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sparsely tethered bilayer lipid membranes formed by self-assembly of bicelles: Spectroelectrochemical characterization and incorporation of transmembrane protein.
    Dziubak D; Sęk S
    Bioelectrochemistry; 2023 Oct; 153():108482. PubMed ID: 37271008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic Membranes for Multi-Redox Center Proteins.
    Naumann RL; Geiss AF; Steininger C; Knoll W
    Int J Mol Sci; 2016 Mar; 17(3):330. PubMed ID: 26950120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid Landscapes: Vibrational Spectroscopy for Decoding Membrane Complexity.
    Chen X; Al-Mualem ZA; Baiz CR
    Annu Rev Phys Chem; 2024 Jun; 75(1):283-305. PubMed ID: 38382566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-Enhanced Infrared Spectroscopy and Neutron Reflectivity Studies of Ubiquinone in Hybrid Bilayer Membranes under Potential Control.
    Quirk A; Lardner MJ; Tun Z; Burgess IJ
    Langmuir; 2016 Mar; 32(9):2225-35. PubMed ID: 26867110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins.
    Ataka K; Stripp ST; Heberle J
    Biochim Biophys Acta; 2013 Oct; 1828(10):2283-93. PubMed ID: 23816441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid bilayer membranes in air and water: infrared spectroscopy and neutron reflectivity studies.
    Meuse CW; Krueger S; Majkrzak CF; Dura JA; Fu J; Connor JT; Plant AL
    Biophys J; 1998 Mar; 74(3):1388-98. PubMed ID: 9512035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-specific measurements of lipid membrane interfacial water dynamics with multidimensional infrared spectroscopy.
    Osborne DG; Dunbar JA; Lapping JG; White AM; Kubarych KJ
    J Phys Chem B; 2013 Dec; 117(49):15407-14. PubMed ID: 23931556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of the protein myristoylation on the structure of a model cell membrane in a protein bound state.
    Brand I; Koch KW
    Bioelectrochemistry; 2018 Dec; 124():13-21. PubMed ID: 29990597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Situ Electrochemical and PM-IRRAS Studies of Colicin E1 Ion Channels in the Floating Bilayer Lipid Membrane.
    Su Z; Ho D; Merrill AR; Lipkowski J
    Langmuir; 2019 Jun; 35(25):8452-8459. PubMed ID: 31194562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular uptake of nanoparticles by membrane penetration: a study combining confocal microscopy with FTIR spectroelectrochemistry.
    Wang T; Bai J; Jiang X; Nienhaus GU
    ACS Nano; 2012 Feb; 6(2):1251-9. PubMed ID: 22250809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fourier transform infrared spectroscopic studies of the interaction of the antimicrobial peptide gramicidin S with lipid micelles and with lipid monolayer and bilayer membranes.
    Lewis RN; Prenner EJ; Kondejewski LH; Flach CR; Mendelsohn R; Hodges RS; McElhaney RN
    Biochemistry; 1999 Nov; 38(46):15193-203. PubMed ID: 10563802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A phospholipid bilayer supported under a polymerized Langmuir film.
    Saccani J; Castano S; Desbat B; Blaudez D
    Biophys J; 2003 Dec; 85(6):3781-7. PubMed ID: 14645068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined electrochemistry and surface-enhanced infrared absorption spectroscopy of gramicidin A incorporated into tethered bilayer lipid membranes.
    Kozuch J; Steinem C; Hildebrandt P; Millo D
    Angew Chem Int Ed Engl; 2012 Aug; 51(32):8114-7. PubMed ID: 22865570
    [No Abstract]   [Full Text] [Related]  

  • 17. Cholesterol enhances surface water diffusion of phospholipid bilayers.
    Cheng CY; Olijve LL; Kausik R; Han S
    J Chem Phys; 2014 Dec; 141(22):22D513. PubMed ID: 25494784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of strong and weak lipid-protein interactions on the structure of a lipid bilayer on a gold electrode surface.
    Nullmeier M; Koliwer-Brandl H; Kelm S; Zägel P; Koch KW; Brand I
    Chemphyschem; 2011 Apr; 12(6):1066-79. PubMed ID: 21442718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structure of lipid bilayers adsorbed on activated carboxy-terminated monolayers investigated by sum frequency generation spectroscopy.
    Casford MT; Ge A; Kett PJ; Ye S; Davies PB
    J Phys Chem B; 2014 Mar; 118(12):3335-45. PubMed ID: 24628457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The shape of lipid molecules affects potential-driven molecular-scale rearrangements in model cell membranes on electrodes.
    Khairalla B; Juhaniewicz-Debinska J; Sek S; Brand I
    Bioelectrochemistry; 2020 Apr; 132():107443. PubMed ID: 31869700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.