BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 34854051)

  • 1. Bacterial Dye Release Measures in Response to Antimicrobial Peptides.
    Dumpati S; Dutta D
    Methods Mol Biol; 2022; 2402():285-290. PubMed ID: 34854051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain.
    Roth BL; Poot M; Yue ST; Millard PJ
    Appl Environ Microbiol; 1997 Jun; 63(6):2421-31. PubMed ID: 9172364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between antimicrobial peptides-induced cell membrane damage and bactericidal activity.
    Islam MZ; Hossain F; Ali MH; Yamazaki M
    Biophys J; 2023 Dec; 122(24):4645-4655. PubMed ID: 37950441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of Antimicrobial Peptides: Antimicrobial, Anti-Inflammatory and Antibiofilm Activities.
    Luo Y; Song Y
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation of Bacteria by γ-Irradiation to Investigate the Interaction with Antimicrobial Peptides.
    Correa W; Brandenburg J; Behrends J; Heinbockel L; Reiling N; Paulowski L; Schwudke D; Stephan K; Martinez-de-Tejada G; Brandenburg K; Gutsmann T
    Biophys J; 2019 Nov; 117(10):1805-1819. PubMed ID: 31676134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Rapid Fluorescence-Based Microplate Assay to Investigate the Interaction of Membrane Active Antimicrobial Peptides with Whole Gram-Positive Bacteria.
    Boix-Lemonche G; Lekka M; Skerlavaj B
    Antibiotics (Basel); 2020 Feb; 9(2):. PubMed ID: 32093104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial peptides (AMPs) produced by Saccharomyces cerevisiae induce alterations in the intracellular pH, membrane permeability and culturability of Hanseniaspora guilliermondii cells.
    Branco P; Viana T; Albergaria H; Arneborg N
    Int J Food Microbiol; 2015 Jul; 205():112-8. PubMed ID: 25897995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrophobicity Determines the Bacterial Killing Rate of α-Helical Antimicrobial Peptides and Influences the Bacterial Resistance Development.
    Zhang M; Ouyang J; Fu L; Xu C; Ge Y; Sun S; Li X; Lai S; Ke H; Yuan B; Yang K; Yu H; Gao L; Wang Y
    J Med Chem; 2022 Nov; 65(21):14701-14720. PubMed ID: 36283984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cathelicidin Peptides Restrict Bacterial Growth via Membrane Perturbation and Induction of Reactive Oxygen Species.
    Rowe-Magnus DA; Kao AY; Prieto AC; Pu M; Kao C
    mBio; 2019 Sep; 10(5):. PubMed ID: 31506312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial resistance to antimicrobial peptides.
    Abdi M; Mirkalantari S; Amirmozafari N
    J Pept Sci; 2019 Nov; 25(11):e3210. PubMed ID: 31637796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperativity in Bacterial Membrane Association Controls the Synergistic Activities of Antimicrobial Peptides.
    Nguyen TN; Teimouri H; Medvedeva A; Kolomeisky AB
    J Phys Chem B; 2022 Sep; 126(38):7365-7372. PubMed ID: 36108158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bactericidal Activity of a Cationic Peptide on Neisseria meningitidis.
    De-Simone SG; Souza ALA; Pina JLS; Junior IN; Lourenço MC; Provance DW
    Infect Disord Drug Targets; 2019; 19(4):421-427. PubMed ID: 30113001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Green fluorescent protein-propidium iodide (GFP-PI) based assay for flow cytometric measurement of bacterial viability.
    Lehtinen J; Nuutila J; Lilius EM
    Cytometry A; 2004 Aug; 60(2):165-72. PubMed ID: 15290717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional Analyses of Three Targeted DNA Antimicrobial Peptides Derived from Goats.
    Wang A; Zhou M; Chen Q; Jin H; Xu G; Guo R; Wang J; Lai R
    Biomolecules; 2023 Sep; 13(10):. PubMed ID: 37892141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting nucleic acid phase transitions as a mechanism of action for antimicrobial peptides.
    Sneideris T; Erkamp NA; Ausserwöger H; Saar KL; Welsh TJ; Qian D; Katsuya-Gaviria K; Johncock MLLY; Krainer G; Borodavka A; Knowles TPJ
    Nat Commun; 2023 Nov; 14(1):7170. PubMed ID: 37935659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimicrobial Peptides and Macromolecules for Combating Microbial Infections: From Agents to Interfaces.
    Yu L; Li K; Zhang J; Jin H; Saleem A; Song Q; Jia Q; Li P
    ACS Appl Bio Mater; 2022 Feb; 5(2):366-393. PubMed ID: 35072444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimicrobial activities and membrane-active mechanism of CPF-C1 against multidrug-resistant bacteria, a novel antimicrobial peptide derived from skin secretions of the tetraploid frog Xenopus clivii.
    Xie J; Gou Y; Zhao Q; Wang K; Yang X; Yan J; Zhang W; Zhang B; Ma C; Wang R
    J Pept Sci; 2014 Nov; 20(11):876-84. PubMed ID: 25098547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perspectives in Searching Antimicrobial Peptides (AMPs) Produced by the Microbiota.
    Gallardo-Becerra L; Cervantes-Echeverría M; Cornejo-Granados F; Vazquez-Morado LE; Ochoa-Leyva A
    Microb Ecol; 2023 Dec; 87(1):8. PubMed ID: 38036921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rationally designed antimicrobial peptides: Insight into the mechanism of eleven residue peptides against microbial infections.
    Pandit G; Biswas K; Ghosh S; Debnath S; Bidkar AP; Satpati P; Bhunia A; Chatterjee S
    Biochim Biophys Acta Biomembr; 2020 Apr; 1862(4):183177. PubMed ID: 31954105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo generation of short antimicrobial peptides with enhanced stability and cell specificity.
    Kim H; Jang JH; Kim SC; Cho JH
    J Antimicrob Chemother; 2014 Jan; 69(1):121-32. PubMed ID: 23946320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.