These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 34854254)

  • 1. Extracellular lipidome change by an SGLT2 inhibitor, luseogliflozin, contributes to prevent skeletal muscle atrophy in db/db mice.
    Bamba R; Okamura T; Hashimoto Y; Majima S; Senmaru T; Ushigome E; Nakanishi N; Asano M; Yamazaki M; Takakuwa H; Hamaguchi M; Fukui M
    J Cachexia Sarcopenia Muscle; 2022 Feb; 13(1):574-588. PubMed ID: 34854254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gut Microbiota Changes by an SGLT2 Inhibitor, Luseogliflozin, Alters Metabolites Compared with Those in a Low Carbohydrate Diet in db/db Mice.
    Hata S; Okamura T; Kobayashi A; Bamba R; Miyoshi T; Nakajima H; Kitagawa N; Hashimoto Y; Majima S; Senmaru T; Okada H; Ushigome E; Nakanishi N; Takakuwa H; Sasano R; Hamaguchi M; Fukui M
    Nutrients; 2022 Aug; 14(17):. PubMed ID: 36079789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The sodium-glucose cotransporter 2 inhibitor luseogliflozin can suppress muscle atrophy in Db/Db mice by suppressing the expression of
    Okamura T; Hashimoto Y; Osaka T; Fukuda T; Hamaguchi M; Fukui M
    J Clin Biochem Nutr; 2019 Jul; 65(1):23-28. PubMed ID: 31379410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protective effects of the SGLT2 inhibitor luseogliflozin on pancreatic β-cells in db/db mice: The earlier and longer, the better.
    Kimura T; Obata A; Shimoda M; Okauchi S; Kanda-Kimura Y; Nogami Y; Moriuchi S; Hirukawa H; Kohara K; Nakanishi S; Mune T; Kaku K; Kaneto H
    Diabetes Obes Metab; 2018 Oct; 20(10):2442-2457. PubMed ID: 29873444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protective effects of SGLT2 inhibitor luseogliflozin on pancreatic β-cells in obese type 2 diabetic db/db mice.
    Okauchi S; Shimoda M; Obata A; Kimura T; Hirukawa H; Kohara K; Mune T; Kaku K; Kaneto H
    Biochem Biophys Res Commun; 2016 Feb; 470(3):772-782. PubMed ID: 26505796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SHR3824, a novel selective inhibitor of renal sodium glucose cotransporter 2, exhibits antidiabetic efficacy in rodent models.
    Yan PK; Zhang LN; Feng Y; Qu H; Qin L; Zhang LS; Leng Y
    Acta Pharmacol Sin; 2014 May; 35(5):613-24. PubMed ID: 24786232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treatments for skeletal muscle abnormalities in heart failure: sodium-glucose transporter 2 and ketone bodies.
    Takada S; Sabe H; Kinugawa S
    Am J Physiol Heart Circ Physiol; 2022 Feb; 322(2):H117-H128. PubMed ID: 34860594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycemic control by the SGLT2 inhibitor empagliflozin decreases aortic stiffness, renal resistivity index and kidney injury.
    Aroor AR; Das NA; Carpenter AJ; Habibi J; Jia G; Ramirez-Perez FI; Martinez-Lemus L; Manrique-Acevedo CM; Hayden MR; Duta C; Nistala R; Mayoux E; Padilla J; Chandrasekar B; DeMarco VG
    Cardiovasc Diabetol; 2018 Jul; 17(1):108. PubMed ID: 30060748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypoxia-inducible factor-1α is the therapeutic target of the SGLT2 inhibitor for diabetic nephropathy.
    Bessho R; Takiyama Y; Takiyama T; Kitsunai H; Takeda Y; Sakagami H; Ota T
    Sci Rep; 2019 Oct; 9(1):14754. PubMed ID: 31611596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Luseogliflozin, a sodium-glucose cotransporter-2 inhibitor, reverses cerebrovascular dysfunction and cognitive impairments in 18-mo-old diabetic animals.
    Wang S; Jiao F; Border JJ; Fang X; Crumpler RF; Liu Y; Zhang H; Jefferson J; Guo Y; Elliott PS; Thomas KN; Strong LB; Urvina AH; Zheng B; Rijal A; Smith SV; Yu H; Roman RJ; Fan F
    Am J Physiol Heart Circ Physiol; 2022 Feb; 322(2):H246-H259. PubMed ID: 34951541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the sodium-glucose cotransporter 2 inhibitor luseogliflozin on pancreatic beta cell mass in db/db mice of different ages.
    Takahashi K; Nakamura A; Miyoshi H; Nomoto H; Kitao N; Omori K; Yamamoto K; Cho KY; Terauchi Y; Atsumi T
    Sci Rep; 2018 May; 8(1):6864. PubMed ID: 29717223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of SGLT2 inhibitor dapagliflozin in patients with type 2 diabetes on skeletal muscle cellular metabolism.
    Op den Kamp YJM; Gemmink A; de Ligt M; Dautzenberg B; Kornips E; Jorgensen JA; Schaart G; Esterline R; Pava DA; Hoeks J; Schrauwen-Hinderling VB; Kersten S; Havekes B; Koves TR; Muoio DM; Hesselink MKC; Oscarsson J; Phielix E; Schrauwen P
    Mol Metab; 2022 Dec; 66():101620. PubMed ID: 36280113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model-Based Evaluation of Proximal Sodium Reabsorption Through SGLT2 in Health and Diabetes and the Effect of Inhibition With Canagliflozin.
    Brady JA; Hallow KM
    J Clin Pharmacol; 2018 Mar; 58(3):377-385. PubMed ID: 29144539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium-glucose cotransporter 2 inhibitor-induced changes in body composition and simultaneous changes in metabolic profile: 52-week prospective LIGHT (Luseogliflozin: the Components of Weight Loss in Japanese Patients with Type 2 Diabetes Mellitus) Study.
    Sasaki T; Sugawara M; Fukuda M
    J Diabetes Investig; 2019 Jan; 10(1):108-117. PubMed ID: 29660782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Marein ameliorates diabetic nephropathy by inhibiting renal sodium glucose transporter 2 and activating the AMPK signaling pathway in db/db mice and high glucose-treated HK-2 cells.
    Guo Y; Ran Z; Zhang Y; Song Z; Wang L; Yao L; Zhang M; Xin J; Mao X
    Biomed Pharmacother; 2020 Nov; 131():110684. PubMed ID: 33152903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effect of canagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, on slow and fast skeletal muscles from nondiabetic mice.
    Otsuka H; Yokomizo H; Nakamura S; Izumi Y; Takahashi M; Obara S; Nakao M; Ikeda Y; Sato N; Sakamoto R; Miyachi Y; Miyazawa T; Bamba T; Ogawa Y
    Biochem J; 2022 Feb; 479(3):425-444. PubMed ID: 35048967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria.
    Chino Y; Samukawa Y; Sakai S; Nakai Y; Yamaguchi J; Nakanishi T; Tamai I
    Biopharm Drug Dispos; 2014 Oct; 35(7):391-404. PubMed ID: 25044127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TS-071 is a novel, potent and selective renal sodium-glucose cotransporter 2 (SGLT2) inhibitor with anti-hyperglycaemic activity.
    Yamamoto K; Uchida S; Kitano K; Fukuhara N; Okumura-Kitajima L; Gunji E; Kozakai A; Tomoike H; Kojima N; Asami J; Toyoda H; Arai M; Takahashi T; Takahashi K
    Br J Pharmacol; 2011 Sep; 164(1):181-91. PubMed ID: 21410690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in urinary glucose concentration and body weight in patients treated with the selective SGLT2 inhibitor luseogliflozin.
    Jinnouchi H; Yoshida A; Tsuyuno H; Iwamoto K; Sugiyama S; Hieshima K; Kajiwara K; Kurinami N; Suzuki T; Jinnouchi K; Jinnouchi T
    Diabetes Res Clin Pract; 2021 Dec; 182():108916. PubMed ID: 34119556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Luseogliflozin increases beta cell proliferation through humoral factors that activate an insulin receptor- and IGF-1 receptor-independent pathway.
    Shirakawa J; Tajima K; Okuyama T; Kyohara M; Togashi Y; De Jesus DF; Basile G; Kin T; Shapiro AMJ; Kulkarni RN; Terauchi Y
    Diabetologia; 2020 Mar; 63(3):577-587. PubMed ID: 31897526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.