BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34854561)

  • 1. A Microfluidic Device to Fabricate One-Step Cell Bead-Laden Hydrogel Struts for Tissue Engineering.
    Kim J; Lee H; Jin EJ; Jo Y; Kang BE; Ryu D; Kim G
    Small; 2022 Jan; 18(1):e2106487. PubMed ID: 34854561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone-derived dECM/alginate bioink for fabricating a 3D cell-laden mesh structure for bone tissue engineering.
    Lee J; Hong J; Kim W; Kim GH
    Carbohydr Polym; 2020 Dec; 250():116914. PubMed ID: 33049834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Innovative Collagen-Based Cell-Printing Method for Obtaining Human Adipose Stem Cell-Laden Structures Consisting of Core-Sheath Structures for Tissue Engineering.
    Yeo M; Lee JS; Chun W; Kim GH
    Biomacromolecules; 2016 Apr; 17(4):1365-75. PubMed ID: 26998966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrohydrodynamic-direct-printed cell-laden microfibrous structure using alginate-based bioink for effective myotube formation.
    Yeo M; Kim G
    Carbohydr Polym; 2021 Nov; 272():118444. PubMed ID: 34420709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocompatibility evaluation of a 3D-bioprinted alginate-GelMA-bacteria nanocellulose (BNC) scaffold laden with oriented-growth RSC96 cells.
    Wu Z; Xie S; Kang Y; Shan X; Li Q; Cai Z
    Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112393. PubMed ID: 34579912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering.
    Hwang CM; Sant S; Masaeli M; Kachouie NN; Zamanian B; Lee SH; Khademhosseini A
    Biofabrication; 2010 Sep; 2(3):035003. PubMed ID: 20823504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly bioactive cell-laden hydrogel constructs bioprinted using an emulsion bioink for tissue engineering applications.
    Kim W; Kim GH
    Biofabrication; 2022 Sep; 14(4):. PubMed ID: 36067738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of hASCs-laden structures using extrusion-based cell printing supplemented with an electric field.
    Yeo M; Ha J; Lee H; Kim G
    Acta Biomater; 2016 Jul; 38():33-43. PubMed ID: 27095485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell(MC3T3-E1)-printed poly(ϵ-caprolactone)/alginate hybrid scaffolds for tissue regeneration.
    Lee H; Ahn S; Bonassar LJ; Kim G
    Macromol Rapid Commun; 2013 Jan; 34(2):142-9. PubMed ID: 23059986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of fully aligned self-assembled cell-laden collagen filaments for tissue engineering
    Kim J; Lee H; Lee G; Ryu D; Kim G
    Bioact Mater; 2024 Jun; 36():14-29. PubMed ID: 38425743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy.
    Yin J; Yan M; Wang Y; Fu J; Suo H
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanically reinforced cell-laden scaffolds formed using alginate-based bioink printed onto the surface of a PCL/alginate mesh structure for regeneration of hard tissue.
    Kim YB; Lee H; Yang GH; Choi CH; Lee D; Hwang H; Jung WK; Yoon H; Kim GH
    J Colloid Interface Sci; 2016 Jan; 461():359-368. PubMed ID: 26409783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced cellular activities of polycaprolactone/alginate-based cell-laden hierarchical scaffolds for hard tissue engineering applications.
    Lee H; Kim G
    J Colloid Interface Sci; 2014 Sep; 430():315-25. PubMed ID: 24974244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo.
    Costantini M; Testa S; Mozetic P; Barbetta A; Fuoco C; Fornetti E; Tamiro F; Bernardini S; Jaroszewicz J; Święszkowski W; Trombetta M; Castagnoli L; Seliktar D; Garstecki P; Cesareni G; Cannata S; Rainer A; Gargioli C
    Biomaterials; 2017 Jul; 131():98-110. PubMed ID: 28388499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances on Bioprinted Gelatin Methacrylate-Based Hydrogels for Tissue Repair.
    Rajabi N; Rezaei A; Kharaziha M; Bakhsheshi-Rad HR; Luo H; RamaKrishna S; Berto F
    Tissue Eng Part A; 2021 Jun; 27(11-12):679-702. PubMed ID: 33499750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tendon Tissue Engineering: Effects of Mechanical and Biochemical Stimulation on Stem Cell Alignment on Cell-Laden Hydrogel Yarns.
    Rinoldi C; Costantini M; Kijeńska-Gawrońska E; Testa S; Fornetti E; Heljak M; Ćwiklińska M; Buda R; Baldi J; Cannata S; Guzowski J; Gargioli C; Khademhosseini A; Swieszkowski W
    Adv Healthc Mater; 2019 Apr; 8(7):e1801218. PubMed ID: 30725521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation regulated bioactive hydrogel as the bioink with desirable moldability for microfluidic biofabrication.
    Liu X; Zuo Y; Sun J; Guo Z; Fan H; Zhang X
    Carbohydr Polym; 2017 Dec; 178():8-17. PubMed ID: 29050618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone tissue engineering supported by bioprinted cell constructs with endothelial cell spheroids.
    Kim W; Jang CH; Kim G
    Theranostics; 2022; 12(12):5404-5417. PubMed ID: 35910797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double network laminarin-boronic/alginate dynamic bioink for 3D bioprinting cell-laden constructs.
    Amaral AJR; Gaspar VM; Lavrador P; Mano JF
    Biofabrication; 2021 May; 13(3):. PubMed ID: 34075894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidics-Based Fabrication of Cell-Laden Hydrogel Microfibers for Potential Applications in Tissue Engineering.
    Wang G; Jia L; Han F; Wang J; Yu L; Yu Y; Turnbull G; Guo M; Shu W; Li B
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31027249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.