These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 3485464)

  • 1. Rapid increase in blood-brain barrier permeability during severe hypoxia and metabolic inhibition.
    Olesen SP
    Brain Res; 1986 Mar; 368(1):24-9. PubMed ID: 3485464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substances that rapidly augment ionic conductance of endothelium in cerebral venules.
    Olesen SP; Crone C
    Acta Physiol Scand; 1986 Jun; 127(2):233-41. PubMed ID: 3487916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of ion permeability in frog brain venules. Significance of calcium, cyclic nucleotides and protein kinase C.
    Olesen SP
    J Physiol; 1987 Jun; 387():59-68. PubMed ID: 3498830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A calcium-dependent reversible permeability increase in microvessels in frog brain, induced by serotonin.
    Olesen SP
    J Physiol; 1985 Apr; 361():103-13. PubMed ID: 3157795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free oxygen radicals decrease electrical resistance of microvascular endothelium in brain.
    Olesen SP
    Acta Physiol Scand; 1987 Feb; 129(2):181-7. PubMed ID: 3107345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An electrophysiological study of microvascular permeability and its modulation by chemical mediators.
    Olesen SP
    Acta Physiol Scand Suppl; 1989; 579():1-28. PubMed ID: 2543183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of hypoxia on endothelial/pericytic co-culture model of the blood-brain barrier.
    Hayashi K; Nakao S; Nakaoke R; Nakagawa S; Kitagawa N; Niwa M
    Regul Pept; 2004 Dec; 123(1-3):77-83. PubMed ID: 15518896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric-oxide-induced inhibition of glyceraldehyde-3-phosphate dehydrogenase may mediate reduced endothelial cell monolayer integrity in an in vitro model blood-brain barrier.
    Hurst RD; Azam S; Hurst A; Clark JB
    Brain Res; 2001 Mar; 894(2):181-8. PubMed ID: 11251191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of barbiturates on hypoxic cultures of brain derived microvascular endothelial cells.
    Fischer S; Renz D; Schaper W; Karliczek GF
    Brain Res; 1996 Jan; 707(1):47-53. PubMed ID: 8866712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical resistance of brain microvascular endothelium.
    Crone C; Olesen SP
    Brain Res; 1982 Jun; 241(1):49-55. PubMed ID: 6980688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling and rescue of defective blood-brain barrier function of induced brain microvascular endothelial cells from childhood cerebral adrenoleukodystrophy patients.
    Lee CAA; Seo HS; Armien AG; Bates FS; Tolar J; Azarin SM
    Fluids Barriers CNS; 2018 Apr; 15(1):9. PubMed ID: 29615068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breakdown of the blood-brain barrier after fluid percussion brain injury in the rat: Part 2: Effect of hypoxia on permeability to plasma proteins.
    Tanno H; Nockels RP; Pitts LH; Noble LJ
    J Neurotrauma; 1992; 9(4):335-47. PubMed ID: 1291693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study.
    Butt AM; Jones HC; Abbott NJ
    J Physiol; 1990 Oct; 429():47-62. PubMed ID: 2277354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of the myosin light chain kinase prevents hypoxia-induced blood-brain barrier disruption.
    Kuhlmann CR; Tamaki R; Gamerdinger M; Lessmann V; Behl C; Kempski OS; Luhmann HJ
    J Neurochem; 2007 Jul; 102(2):501-7. PubMed ID: 17419808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of inflammatory agents on electrical resistance across the blood-brain barrier in pial microvessels of anaesthetized rats.
    Butt AM
    Brain Res; 1995 Oct; 696(1-2):145-50. PubMed ID: 8574662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Permeabilities of single arterioles and venules in the frog skin: a functional and morphological study.
    Olesen SP; de Saint-Aubain ML; Bundgaard M
    Microvasc Res; 1984 Jul; 28(1):1-22. PubMed ID: 6611473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An evaluation of the membrane constants and the potassium conductance in metabolically exhausted muscle fibres.
    Fink R; Lüttgau HC
    J Physiol; 1976 Dec; 263(2):215-38. PubMed ID: 1087932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrastructure of frog cerebral and pial microvessels and their impermeability to lanthanum ions.
    Bundgaard M
    Brain Res; 1982 Jun; 241(1):57-65. PubMed ID: 6980689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of histamine and antagonists on electrical resistance across the blood-brain barrier in rat brain-surface microvessels.
    Butt AM; Jones HC
    Brain Res; 1992 Jan; 569(1):100-5. PubMed ID: 1611469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protection against hypoxia-induced increase in blood-brain barrier permeability: role of tight junction proteins and NFkappaB.
    Brown RC; Mark KS; Egleton RD; Huber JD; Burroughs AR; Davis TP
    J Cell Sci; 2003 Feb; 116(Pt 4):693-700. PubMed ID: 12538770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.