These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34855126)

  • 1. Stable Deep Neural Network Architectures for Mitochondria Segmentation on Electron Microscopy Volumes.
    Franco-Barranco D; Muñoz-Barrutia A; Arganda-Carreras I
    Neuroinformatics; 2022 Apr; 20(2):437-450. PubMed ID: 34855126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning based domain adaptation for mitochondria segmentation on EM volumes.
    Franco-Barranco D; Pastor-Tronch J; González-Marfil A; Muñoz-Barrutia A; Arganda-Carreras I
    Comput Methods Programs Biomed; 2022 Jul; 222():106949. PubMed ID: 35753105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BUS-Set: A benchmark for quantitative evaluation of breast ultrasound segmentation networks with public datasets.
    Thomas C; Byra M; Marti R; Yap MH; Zwiggelaar R
    Med Phys; 2023 May; 50(5):3223-3243. PubMed ID: 36794706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HIVE-Net: Centerline-aware hierarchical view-ensemble convolutional network for mitochondria segmentation in EM images.
    Yuan Z; Ma X; Yi J; Luo Z; Peng J
    Comput Methods Programs Biomed; 2021 Mar; 200():105925. PubMed ID: 33508773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MADR-Net: multi-level attention dilated residual neural network for segmentation of medical images.
    Balraj K; Ramteke M; Mittal S; Bhargava R; Rathore AS
    Sci Rep; 2024 Jun; 14(1):12699. PubMed ID: 38830932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel adaptive cubic quasi-Newton optimizer for deep learning based medical image analysis tasks, validated on detection of COVID-19 and segmentation for COVID-19 lung infection, liver tumor, and optic disc/cup.
    Liu Y; Zhang M; Zhong Z; Zeng X
    Med Phys; 2023 Mar; 50(3):1528-1538. PubMed ID: 36057788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study of pre-trained convolutional neural networks for semantic segmentation of breast tumors in ultrasound.
    Gómez-Flores W; Coelho de Albuquerque Pereira W
    Comput Biol Med; 2020 Nov; 126():104036. PubMed ID: 33059238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated joint skull-stripping and segmentation with Multi-Task U-Net in large mouse brain MRI databases.
    De Feo R; Shatillo A; Sierra A; Valverde JM; Gröhn O; Giove F; Tohka J
    Neuroimage; 2021 Apr; 229():117734. PubMed ID: 33454412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient fetal ultrasound image segmentation for automatic head circumference measurement using a lightweight deep convolutional neural network.
    Zeng W; Luo J; Cheng J; Lu Y
    Med Phys; 2022 Aug; 49(8):5081-5092. PubMed ID: 35536111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BiU-net: A dual-branch structure based on two-stage fusion strategy for biomedical image segmentation.
    Huang Z; Zhao Y; Yu Z; Qin P; Han X; Wang M; Liu M; Gregersen H
    Comput Methods Programs Biomed; 2024 Jul; 252():108235. PubMed ID: 38776830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MIScnn: a framework for medical image segmentation with convolutional neural networks and deep learning.
    Müller D; Kramer F
    BMC Med Imaging; 2021 Jan; 21(1):12. PubMed ID: 33461500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation.
    Zhou Z; Siddiquee MMR; Tajbakhsh N; Liang J
    IEEE Trans Med Imaging; 2020 Jun; 39(6):1856-1867. PubMed ID: 31841402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Technical note: Progressive deep learning: An accelerated training strategy for medical image segmentation.
    Choi B; Olberg S; Park JC; Kim JS; Shrestha DK; Yaddanapudi S; Furutani KM; Beltran CJ
    Med Phys; 2023 Aug; 50(8):5075-5087. PubMed ID: 36763566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of deep learning U-Net architectures for posterior segment OCT retinal layer segmentation.
    Kugelman J; Allman J; Read SA; Vincent SJ; Tong J; Kalloniatis M; Chen FK; Collins MJ; Alonso-Caneiro D
    Sci Rep; 2022 Sep; 12(1):14888. PubMed ID: 36050364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection, segmentation, and 3D pose estimation of surgical tools using convolutional neural networks and algebraic geometry.
    Hasan MK; Calvet L; Rabbani N; Bartoli A
    Med Image Anal; 2021 May; 70():101994. PubMed ID: 33611053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating Very Deep Convolutional Neural Networks for Nucleus Segmentation from Brightfield Cell Microscopy Images.
    Ali MAS; Misko O; Salumaa SO; Papkov M; Palo K; Fishman D; Parts L
    SLAS Discov; 2021 Oct; 26(9):1125-1137. PubMed ID: 34167359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Robust and Accurate Deep-learning-based Method for the Segmentation of Subcortical Brain: Cross-dataset Evaluation of Generalization Performance.
    Furuhashi N; Okuhata S; Kobayashi T
    Magn Reson Med Sci; 2021 Jun; 20(2):166-174. PubMed ID: 32389928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DENSE-INception U-net for medical image segmentation.
    Zhang Z; Wu C; Coleman S; Kerr D
    Comput Methods Programs Biomed; 2020 Aug; 192():105395. PubMed ID: 32163817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation.
    Chaitanya K; Erdil E; Karani N; Konukoglu E
    Med Image Anal; 2023 Jul; 87():102792. PubMed ID: 37054649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of convolutional neural networks towards nuclei segmentation in localization-based super-resolution fluorescence microscopy images.
    Mela CA; Liu Y
    BMC Bioinformatics; 2021 Jun; 22(1):325. PubMed ID: 34130628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.