These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34855173)

  • 1. The migration law of magnesium ions during freezing and melting processes.
    Yan Z; Tongshuai L; Yuanqing T; Wanli Z; Fangyun R; Tongguo Z; Yucan L
    Environ Sci Pollut Res Int; 2022 Apr; 29(18):26675-26687. PubMed ID: 34855173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Migration Pattern of Atrazine during the Processes of Water Freezing and Thawing.
    Zhang Y; Zhao C; Yu A; Zhao W; Ren F; Liu Y
    Toxics; 2022 Oct; 10(10):. PubMed ID: 36287883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Migration Rules of Malathion during Indoor Simulated Lake Freezing.
    Zhang Y; Wang X; Zhao W; Liu Y; Liu T; Yang P
    Toxics; 2023 Feb; 11(3):. PubMed ID: 36976987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treatment of compressed leachate from refuse transfer stations by freeze-melt method.
    Zhang Y; Zhao C; Ren F; Wang X; Sun X; Zou Y; Liu Y; Tian Y
    Waste Manag; 2023 Jun; 164():181-190. PubMed ID: 37059042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of Pseudomonas syringae on water freezing and ice melting.
    Majorina MA; Veselova VR; Melnik BS
    PLoS One; 2022; 17(5):e0265683. PubMed ID: 35551271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Migration mechanism of atrazine in the simulated lake icing process at different freezing temperatures based on density function theory.
    Zhang Y; Lin H; Yu A; Wang X; Liu Y; Liu T; Zhao C; Mei R
    J Environ Sci (China); 2024 Oct; 144():45-54. PubMed ID: 38802237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of salt on the melting of ice: A molecular dynamics simulation study.
    Kim JS; Yethiraj A
    J Chem Phys; 2008 Sep; 129(12):124504. PubMed ID: 19045033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene confinement effects on melting/freezing point and structure and dynamics behavior of water.
    Foroutan M; Fatemi SM; Shokouh F
    J Mol Graph Model; 2016 May; 66():85-90. PubMed ID: 27041448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of PEG crystallization in frozen PEG-sucrose-water solutions: II. Characterization of the equilibrium behavior during freeze-thawing.
    Bhatnagar BS; Martin SM; Teagarden DL; Shalaev EY; Suryanarayanan R
    J Pharm Sci; 2010 Nov; 99(11):4510-24. PubMed ID: 20845450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-density liquid water is the mother of ice: on the relation between mesostructure, thermodynamics and ice crystallization in solutions.
    Bullock G; Molinero V
    Faraday Discuss; 2013; 167():371-88. PubMed ID: 24640501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Freezing and melting behavior of an octyl β-D-glucoside-water binary system--inhibitory effect of octyl β-D-glucoside on ice crystal formation.
    Ogawa S; Asakura K; Osanai S
    Phys Chem Chem Phys; 2012 Dec; 14(47):16312-20. PubMed ID: 23133837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallization, melting, and structure of water nanoparticles at atmospherically relevant temperatures.
    Johnston JC; Molinero V
    J Am Chem Soc; 2012 Apr; 134(15):6650-9. PubMed ID: 22452637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electromelting of confined monolayer ice.
    Qiu H; Guo W
    Phys Rev Lett; 2013 May; 110(19):195701. PubMed ID: 23705718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic aspects of the thermostatted growth of ice from supercooled water in simulations.
    Weiss VC; Rullich M; Köhler C; Frauenheim T
    J Chem Phys; 2011 Jul; 135(3):034701. PubMed ID: 21787017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Freezing of water and melting of ice: theoretical modeling at the nanoscale.
    Ma Y; Dong P; He Y; Zhao Z; Zhang X; Yang J; Yan J; Li W
    Nanoscale; 2023 Nov; 15(44):18004-18014. PubMed ID: 37909355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanism by which fish antifreeze proteins cause thermal hysteresis.
    Kristiansen E; Zachariassen KE
    Cryobiology; 2005 Dec; 51(3):262-80. PubMed ID: 16140290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase diagram of water in carbon nanotubes.
    Takaiwa D; Hatano I; Koga K; Tanaka H
    Proc Natl Acad Sci U S A; 2008 Jan; 105(1):39-43. PubMed ID: 18162549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size- and dimensionality-dependent thermodynamic properties of ice nanocrystals.
    Han YY; Shuai J; Lu HM; Meng XK
    J Phys Chem B; 2012 Feb; 116(5):1651-4. PubMed ID: 22251366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On laboratory simulation and the effect of small temperature oscillations about the freezing point and ice formation on the evaporation rate of water on Mars.
    Moore SR; Sears DW
    Astrobiology; 2006 Aug; 6(4):644-50. PubMed ID: 16916288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Temperature Field Evolution and Water Migration Law of Coal under Low-Temperature Freezing Conditions.
    Li B; Li L; Huang L; Lv X
    Int J Environ Res Public Health; 2021 Dec; 18(24):. PubMed ID: 34948801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.