BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 34855504)

  • 1. Fumarate is a terminal electron acceptor in the mammalian electron transport chain.
    Spinelli JB; Rosen PC; Sprenger HG; Puszynska AM; Mann JL; Roessler JM; Cangelosi AL; Henne A; Condon KJ; Zhang T; Kunchok T; Lewis CA; Chandel NS; Sabatini DM
    Science; 2021 Dec; 374(6572):1227-1237. PubMed ID: 34855504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial ubiquinol oxidation is necessary for tumour growth.
    Martínez-Reyes I; Cardona LR; Kong H; Vasan K; McElroy GS; Werner M; Kihshen H; Reczek CR; Weinberg SE; Gao P; Steinert EM; Piseaux R; Budinger GRS; Chandel NS
    Nature; 2020 Sep; 585(7824):288-292. PubMed ID: 32641834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure, function, and assembly of heme centers in mitochondrial respiratory complexes.
    Kim HJ; Khalimonchuk O; Smith PM; Winge DR
    Biochim Biophys Acta; 2012 Sep; 1823(9):1604-16. PubMed ID: 22554985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osm1 facilitates the transfer of electrons from Erv1 to fumarate in the redox-regulated import pathway in the mitochondrial intermembrane space.
    Neal SE; Dabir DV; Wijaya J; Boon C; Koehler CM
    Mol Biol Cell; 2017 Oct; 28(21):2773-2785. PubMed ID: 28814504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of substituents of the benzoquinone ring on electron-transfer activities of ubiquinone derivatives.
    Gu LQ; Yu L; Yu CA
    Biochim Biophys Acta; 1990 Feb; 1015(3):482-92. PubMed ID: 2154255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Essentiality of succinate dehydrogenase in Mycobacterium smegmatis and its role in the generation of the membrane potential under hypoxia.
    Pecsi I; Hards K; Ekanayaka N; Berney M; Hartman T; Jacobs WR; Cook GM
    mBio; 2014 Aug; 5(4):. PubMed ID: 25118234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gas regulation of complex II reversal via electron shunting to fumarate in the mammalian ETC.
    Banerjee R; Kumar R
    Trends Biochem Sci; 2022 Aug; 47(8):689-698. PubMed ID: 35397924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Schistosoma mansoni sporocysts contain rhodoquinone and produce succinate by fumarate reduction.
    Van Hellemond JJ; Van Remoortere A; Tielens AG
    Parasitology; 1997 Aug; 115 ( Pt 2)():177-82. PubMed ID: 10190173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The nuclear ABC1 gene is essential for the correct conformation and functioning of the cytochrome bc1 complex and the neighbouring complexes II and IV in the mitochondrial respiratory chain.
    Brasseur G; Tron G; Dujardin G; Slonimski PP; Brivet-Chevillotte P
    Eur J Biochem; 1997 May; 246(1):103-11. PubMed ID: 9210471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Structure of the Cardiac Mitochondria Respirasome Is Adapted for the β-Oxidation of Fatty Acids.
    Panov AV
    Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38397087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational Modeling Analysis of Kinetics of Fumarate Reductase Activity and ROS Production during Reverse Electron Transfer in Mitochondrial Respiratory Complex II.
    Markevich NI; Markevich LN
    Int J Mol Sci; 2023 May; 24(9):. PubMed ID: 37175997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Respiratory complex II: ROS production and the kinetics of ubiquinone reduction.
    Grivennikova VG; Kozlovsky VS; Vinogradov AD
    Biochim Biophys Acta Bioenerg; 2017 Feb; 1858(2):109-117. PubMed ID: 27810396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I.
    Plecitá-Hlavatá L; Jezek J; Jezek P
    Int J Biochem Cell Biol; 2009; 41(8-9):1697-707. PubMed ID: 19433311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic characterization of a single bifunctional enzyme for fumarate reduction and succinate oxidation in Geobacter sulfurreducens and engineering of fumarate reduction in Geobacter metallireducens.
    Butler JE; Glaven RH; Esteve-Núñez A; Núñez C; Shelobolina ES; Bond DR; Lovley DR
    J Bacteriol; 2006 Jan; 188(2):450-5. PubMed ID: 16385034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of age and dietary antioxidants on cerebral electron transport chain activity.
    Sharman EH; Bondy SC
    Neurobiol Aging; 2001; 22(4):629-34. PubMed ID: 11445263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The electron transport chain in anaerobically functioning eukaryotes.
    Tielens AG; Van Hellemond JJ
    Biochim Biophys Acta; 1998 Jun; 1365(1-2):71-8. PubMed ID: 9693724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phorphorylative electron transport chains lacking a cytochrome bc1 complex.
    Kröger A; Paulsen J; Schröder I
    J Bioenerg Biomembr; 1986 Jun; 18(3):225-34. PubMed ID: 3015897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assaying mitochondrial respiratory complex activity in mitochondria isolated from human cells and tissues.
    Birch-Machin MA; Turnbull DM
    Methods Cell Biol; 2001; 65():97-117. PubMed ID: 11381612
    [No Abstract]   [Full Text] [Related]  

  • 19. Localization of superoxide anion production to mitochondrial electron transport chain in 3-NPA-treated cells.
    Bacsi A; Woodberry M; Widger W; Papaconstantinou J; Mitra S; Peterson JW; Boldogh I
    Mitochondrion; 2006 Oct; 6(5):235-44. PubMed ID: 17011837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age-related changes in activities of mitochondrial electron transport complexes in various tissues of the mouse.
    Kwong LK; Sohal RS
    Arch Biochem Biophys; 2000 Jan; 373(1):16-22. PubMed ID: 10620319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.