BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34855525)

  • 1. Reproducibility and diurnal variation of the directional sensitivity of the cerebral pressure-flow relationship in men and women.
    Labrecque L; Burma JS; Roy MA; Smirl JD; Brassard P
    J Appl Physiol (1985); 2022 Jan; 132(1):154-166. PubMed ID: 34855525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization of the repeated squat-stand model for studying the directional sensitivity of the cerebral pressure-flow relationship.
    Labrecque L; Smirl JD; Brassard P
    J Appl Physiol (1985); 2021 Sep; 131(3):927-936. PubMed ID: 34264130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directional sensitivity of the cerebral pressure-flow relationship in young healthy individuals trained in endurance and resistance exercise.
    Roy MA; Labrecque L; Perry BG; Korad S; Smirl JD; Brassard P
    Exp Physiol; 2022 Apr; 107(4):299-311. PubMed ID: 35213765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of high-intensity interval training to exhaustion on the directional sensitivity of the cerebral pressure-flow relationship in young endurance-trained men.
    Abbariki F; Roy MA; Labrecque L; Drapeau A; Imhoff S; Smirl JD; Brassard P
    Physiol Rep; 2022 Jul; 10(13):e15384. PubMed ID: 35822439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic cerebral autoregulation and cerebrovascular carbon dioxide reactivity in middle and posterior cerebral arteries in young endurance-trained women.
    Labrecque L; Drapeau A; Rahimaly K; Imhoff S; Brassard P
    J Appl Physiol (1985); 2021 Jun; 130(6):1724-1735. PubMed ID: 33955257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reproducibility and diurnal variation in middle cerebral artery blood velocity in healthy humans.
    Shariffi B; Lloyd IN; Cessac ME; Harper JL; Limberg JK
    Exp Physiol; 2023 May; 108(5):692-705. PubMed ID: 36951536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic cerebral autoregulation across the cardiac cycle during 8 hr of recovery from acute exercise.
    Burma JS; Copeland P; Macaulay A; Khatra O; Wright AD; Smirl JD
    Physiol Rep; 2020 Mar; 8(5):e14367. PubMed ID: 32163235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of cerebrovascular resistance on the dynamic relationship between blood pressure and cerebral blood flow in humans.
    Smirl JD; Tzeng YC; Monteleone BJ; Ainslie PN
    J Appl Physiol (1985); 2014 Jun; 116(12):1614-22. PubMed ID: 24744385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebral arterial time constant calculated from the middle and posterior cerebral arteries in healthy subjects.
    Uryga A; Kasprowicz M; Burzyńska M; Calviello L; Kaczmarska K; Czosnyka M
    J Clin Monit Comput; 2019 Aug; 33(4):605-613. PubMed ID: 30291539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling between arterial pressure, cerebral blood velocity, and cerebral tissue oxygenation with spontaneous and forced oscillations.
    Rickards CA; Sprick JD; Colby HB; Kay VL; Tzeng YC
    Physiol Meas; 2015 Apr; 36(4):785-801. PubMed ID: 25798890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does oscillation size matter? Impact of added resistance on the cerebral pressure-flow Relationship in females and males.
    Newel KT; Burma JS; Carere J; Kennedy CM; Smirl JD
    Physiol Rep; 2022 May; 10(10):e15278. PubMed ID: 35581899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of diurnal variation, anatomical location, and biological sex within spontaneous and driven dynamic cerebral autoregulation measures.
    Burma JS; Copeland P; Macaulay A; Khatra O; Smirl JD
    Physiol Rep; 2020 Jun; 8(11):e14458. PubMed ID: 32537905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying cerebrovascular reactivity in anterior and posterior cerebral circulations during voluntary breath holding.
    Bruce CD; Steinback CD; Chauhan UV; Pfoh JR; Abrosimova M; Vanden Berg ER; Skow RJ; Davenport MH; Day TA
    Exp Physiol; 2016 Dec; 101(12):1517-1527. PubMed ID: 27615115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for hysteresis in the cerebral pressure-flow relationship in healthy men.
    Brassard P; Ferland-Dutil H; Smirl JD; Paquette M; Le Blanc O; Malenfant S; Ainslie PN
    Am J Physiol Heart Circ Physiol; 2017 Apr; 312(4):H701-H704. PubMed ID: 28130339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methodological comparison of active- and passive-driven oscillations in blood pressure; implications for the assessment of cerebral pressure-flow relationships.
    Smirl JD; Hoffman K; Tzeng YC; Hansen A; Ainslie PN
    J Appl Physiol (1985); 2015 Sep; 119(5):487-501. PubMed ID: 26183476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of sex on the reliability of cerebral blood velocity regulation during lower body negative pressure and supine cycling with considerations of the menstrual cycle.
    Johnson NE; Burma JS; Seok J; Miutz LN; Smirl JD
    Physiol Meas; 2023 Nov; 44(11):. PubMed ID: 37848016
    [No Abstract]   [Full Text] [Related]  

  • 17. Sex differences in cerebral autoregulation are unaffected by menstrual cycle phase in young, healthy women.
    Favre ME; Serrador JM
    Am J Physiol Heart Circ Physiol; 2019 Apr; 316(4):H920-H933. PubMed ID: 30707610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responses of cerebral blood velocity and tissue oxygenation to low-frequency oscillations during simulated haemorrhagic stress in humans.
    Anderson GK; Sprick JD; Park FS; Rosenberg AJ; Rickards CA
    Exp Physiol; 2019 Aug; 104(8):1190-1201. PubMed ID: 31090115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of superimposed tilt and lower body negative pressure on anterior and posterior cerebral circulations.
    Tymko MM; Rickards CA; Skow RJ; Ingram-Cotton NC; Howatt MK; Day TA
    Physiol Rep; 2016 Sep; 4(17):. PubMed ID: 27634108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of hypercapnia on regional cerebral blood flow regulation during progressive lower-body negative pressure.
    Thrall SF; Tymko MM; Green CLM; Wynnyk KI; Brandt RA; Day TA
    Eur J Appl Physiol; 2021 Jan; 121(1):339-349. PubMed ID: 33089364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.