BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34855582)

  • 1. An Ultrasound-Guided Hemispherical Phased Array for Microbubble-Mediated Ultrasound Therapy.
    Deng L; Yang SD; O'Reilly MA; Jones RM; Hynynen K
    IEEE Trans Biomed Eng; 2022 May; 69(5):1776-1787. PubMed ID: 34855582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multi-frequency sparse hemispherical ultrasound phased array for microbubble-mediated transcranial therapy and simultaneous cavitation mapping.
    Deng L; O'Reilly MA; Jones RM; An R; Hynynen K
    Phys Med Biol; 2016 Dec; 61(24):8476-8501. PubMed ID: 27845920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Registration of human skull computed tomography data to an ultrasound treatment space using a sparse high frequency ultrasound hemispherical array.
    O'Reilly MA; Jones RM; Birman G; Hynynen K
    Med Phys; 2016 Sep; 43(9):5063. PubMed ID: 27587036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental demonstration of passive acoustic imaging in the human skull cavity using CT-based aberration corrections.
    Jones RM; O'Reilly MA; Hynynen K
    Med Phys; 2015 Jul; 42(7):4385-400. PubMed ID: 26133635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implementation of a Skull-Conformal Phased Array for Transcranial Focused Ultrasound Therapy.
    Adams C; Jones RM; Yang SD; Kan WM; Leung K; Zhou Y; Lee KU; Huang Y; Hynynen K
    IEEE Trans Biomed Eng; 2021 Nov; 68(11):3457-3468. PubMed ID: 33950835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional transcranial microbubble imaging for guiding volumetric ultrasound-mediated blood-brain barrier opening.
    Jones RM; Deng L; Leung K; McMahon D; O'Reilly MA; Hynynen K
    Theranostics; 2018; 8(11):2909-2926. PubMed ID: 29896293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dual-mode hemispherical sparse array for 3D passive acoustic mapping and skull localization within a clinical MRI guided focused ultrasound device.
    Crake C; Brinker ST; Coviello CM; Livingstone MS; McDannold NJ
    Phys Med Biol; 2018 Mar; 63(6):065008. PubMed ID: 29459494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A High-Frequency Phased Array System for Transcranial Ultrasound Delivery in Small Animals.
    Rahimi S; Jones RM; Hynynen K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Jan; 68(1):127-135. PubMed ID: 32746231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasound focusing using magnetic resonance acoustic radiation force imaging: application to ultrasound transcranial therapy.
    Hertzberg Y; Volovick A; Zur Y; Medan Y; Vitek S; Navon G
    Med Phys; 2010 Jun; 37(6):2934-42. PubMed ID: 20632605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast three-dimensional microbubble imaging
    Jones RM; McMahon D; Hynynen K
    Theranostics; 2020; 10(16):7211-7230. PubMed ID: 32641988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Implementation of a Transmit/Receive Ultrasound Phased Array for Brain Applications.
    Liu HL; Tsai CH; Jan CK; Chang HY; Huang SM; Li ML; Qiu W; Zheng H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Oct; 65(10):1756-1767. PubMed ID: 30010555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of analytical and numerical approaches for CT-based aberration correction in transcranial passive acoustic imaging.
    Jones RM; Hynynen K
    Phys Med Biol; 2016 Jan; 61(1):23-36. PubMed ID: 26605827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrashort echo-time MRI versus CT for skull aberration correction in MR-guided transcranial focused ultrasound: In vitro comparison on human calvaria.
    Miller GW; Eames M; Snell J; Aubry JF
    Med Phys; 2015 May; 42(5):2223-33. PubMed ID: 25979016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional super resolution ultrasound imaging with a multi-frequency hemispherical phased array.
    Deng L; Lea-Banks H; Jones RM; O'Reilly MA; Hynynen K
    Med Phys; 2023 Dec; 50(12):7478-7497. PubMed ID: 37702919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3-D Transcranial Microbubble Cavitation Localization by Four Sensors.
    Hu Z; Xu L; Chien CY; Yang Y; Gong Y; Ye D; Pacia CP; Chen H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Nov; 68(11):3336-3346. PubMed ID: 34166187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcranial passive acoustic mapping with hemispherical sparse arrays using CT-based skull-specific aberration corrections: a simulation study.
    Jones RM; O'Reilly MA; Hynynen K
    Phys Med Biol; 2013 Jul; 58(14):4981-5005. PubMed ID: 23807573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of using lateral mode coupling method for a large scale ultrasound phased array for noninvasive transcranial therapy.
    Song J; Hynynen K
    IEEE Trans Biomed Eng; 2010 Jan; 57(1):124-33. PubMed ID: 19695987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental Demonstration of Trans-Skull Volumetric Passive Acoustic Mapping With the Heterogeneous Angular Spectrum Approach.
    Schoen S; Dash P; Arvanitis CD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Feb; 69(2):534-542. PubMed ID: 34748486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A PVDF receiver for ultrasound monitoring of transcranial focused ultrasound therapy.
    O'Reilly MA; Hynynen K
    IEEE Trans Biomed Eng; 2010 Sep; 57(9):2286-94. PubMed ID: 20515709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated ultrasound and magnetic resonance imaging for simultaneous temperature and cavitation monitoring during focused ultrasound therapies.
    Arvanitis CD; McDannold N
    Med Phys; 2013 Nov; 40(11):112901. PubMed ID: 24320468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.