These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 34855582)
21. Integrated ultrasound and magnetic resonance imaging for simultaneous temperature and cavitation monitoring during focused ultrasound therapies. Arvanitis CD; McDannold N Med Phys; 2013 Nov; 40(11):112901. PubMed ID: 24320468 [TBL] [Abstract][Full Text] [Related]
23. Comparison between MR and CT imaging used to correct for skull-induced phase aberrations during transcranial focused ultrasound. Leung SA; Moore D; Gilbo Y; Snell J; Webb TD; Meyer CH; Miller GW; Ghanouni P; Butts Pauly K Sci Rep; 2022 Aug; 12(1):13407. PubMed ID: 35927449 [TBL] [Abstract][Full Text] [Related]
24. Three-dimensional transcranial ultrasound imaging of microbubble clouds using a sparse hemispherical array. O'Reilly MA; Jones RM; Hynynen K IEEE Trans Biomed Eng; 2014 Apr; 61(4):1285-94. PubMed ID: 24658252 [TBL] [Abstract][Full Text] [Related]
25. Numerical and experimental evaluation of low-intensity transcranial focused ultrasound wave propagation using human skulls for brain neuromodulation. Chen M; Peng C; Wu H; Huang CC; Kim T; Traylor Z; Muller M; Chhatbar PY; Nam CS; Feng W; Jiang X Med Phys; 2023 Jan; 50(1):38-49. PubMed ID: 36342303 [TBL] [Abstract][Full Text] [Related]
26. A Noninvasive Ultrasound Resonance Method for Detecting Skull Induced Phase Shifts May Provide a Signal for Adaptive Focusing. Deng L; Hughes A; Hynynen K IEEE Trans Biomed Eng; 2020 Sep; 67(9):2628-2637. PubMed ID: 31976875 [TBL] [Abstract][Full Text] [Related]
27. An Ultrasound Array of Emitter-Receiver Stacks for Microbubble-Based Therapy. Jiang Z; Cudeiro-Blanco J; Ilbilgi Yildiz B; Sujarittam K; Dickinson RJ; Guasch L; Tang M; Hall TL; Choi JJ IEEE Trans Biomed Eng; 2024 Feb; 71(2):467-476. PubMed ID: 37607156 [TBL] [Abstract][Full Text] [Related]
28. Localized blood-brain barrier opening in infiltrating gliomas with MRI-guided acoustic emissions-controlled focused ultrasound. Anastasiadis P; Gandhi D; Guo Y; Ahmed AK; Bentzen SM; Arvanitis C; Woodworth GF Proc Natl Acad Sci U S A; 2021 Sep; 118(37):. PubMed ID: 34504017 [TBL] [Abstract][Full Text] [Related]
29. Evaluation of capacitive micromachined ultrasonic transducers for passive monitoring of microbubble-assisted ultrasound therapies. Dauba A; Goulas J; Colin L; Jourdain L; Larrat B; Gennisson JL; Certon D; Novell A J Acoust Soc Am; 2020 Oct; 148(4):2248. PubMed ID: 33138521 [TBL] [Abstract][Full Text] [Related]
30. Investigation of standing-wave formation in a human skull for a clinical prototype of a large-aperture, transcranial MR-guided focused ultrasound (MRgFUS) phased array: an experimental and simulation study. Song J; Pulkkinen A; Huang Y; Hynynen K IEEE Trans Biomed Eng; 2012 Feb; 59(2):435-44. PubMed ID: 22049360 [TBL] [Abstract][Full Text] [Related]
31. Design and experimental evaluation of a 256-channel dual-frequency ultrasound phased-array system for transcranial blood-brain barrier opening and brain drug delivery. Liu HL; Jan CK; Chu PC; Hong JC; Lee PY; Hsu JD; Lin CC; Huang CY; Chen PY; Wei KC IEEE Trans Biomed Eng; 2014 Apr; 61(4):1350-60. PubMed ID: 24658258 [TBL] [Abstract][Full Text] [Related]
32. Heterogeneous Angular Spectrum Method for Trans-Skull Imaging and Focusing. Schoen S; Arvanitis CD IEEE Trans Med Imaging; 2020 May; 39(5):1605-1614. PubMed ID: 31751231 [TBL] [Abstract][Full Text] [Related]
33. The application of sparse arrays in high frequency transcranial focused ultrasound therapy: a simulation study. Pajek D; Hynynen K Med Phys; 2013 Dec; 40(12):122901. PubMed ID: 24320540 [TBL] [Abstract][Full Text] [Related]
34. An efficient method for transcranial ultrasound focus correction based on the coupling of boundary integrals and finite elements. Shen F; Fan F; Li F; Wang L; Wang R; Wang Y; Liu T; Wei C; Niu H Ultrasonics; 2024 Feb; 137():107181. PubMed ID: 37847943 [TBL] [Abstract][Full Text] [Related]
35. Transcranial functional ultrasound imaging of the brain using microbubble-enhanced ultrasensitive Doppler. Errico C; Osmanski BF; Pezet S; Couture O; Lenkei Z; Tanter M Neuroimage; 2016 Jan; 124(Pt A):752-761. PubMed ID: 26416649 [TBL] [Abstract][Full Text] [Related]
36. An Acoustic Measurement Library for Non-Invasive Trans-Rodent Skull Ultrasonic Focusing at High Frequency. Rahimi S; Jones RM; Hynynen K IEEE Trans Biomed Eng; 2022 Jul; 69(7):2184-2191. PubMed ID: 34951839 [TBL] [Abstract][Full Text] [Related]
37. Correlation Between Brain Tissue Damage and Inertial Cavitation Dose Quantified Using Passive Cavitation Imaging. Xu S; Ye D; Wan L; Shentu Y; Yue Y; Wan M; Chen H Ultrasound Med Biol; 2019 Oct; 45(10):2758-2766. PubMed ID: 31378549 [TBL] [Abstract][Full Text] [Related]
38. 500-element ultrasound phased array system for noninvasive focal surgery of the brain: a preliminary rabbit study with ex vivo human skulls. Hynynen K; Clement GT; McDannold N; Vykhodtseva N; King R; White PJ; Vitek S; Jolesz FA Magn Reson Med; 2004 Jul; 52(1):100-7. PubMed ID: 15236372 [TBL] [Abstract][Full Text] [Related]
39. Combined low-frequency ultrasound and microbubble contrast agent for the treatment of benign prostatic hyperplasia. Yang SL; Tang KQ; Bai WK; Zhao YW; Shen E; Tao JJ; Hu B J Endourol; 2013 Aug; 27(8):1020-6. PubMed ID: 23607285 [TBL] [Abstract][Full Text] [Related]
40. A numerical study of transcranial focused ultrasound beam propagation at low frequency. Yin X; Hynynen K Phys Med Biol; 2005 Apr; 50(8):1821-36. PubMed ID: 15815098 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]