These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34855589)

  • 1. Calibrated Frequency-Division Distorted Born Iterative Tomography for Real-Life Head Imaging.
    Guo L; Nguyen-Trong N; Ai-Saffar A; Stancombe A; Bialkowski K; Abbosh A
    IEEE Trans Med Imaging; 2022 May; 41(5):1087-1103. PubMed ID: 34855589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive Clustering Distorted Born Iterative Method for Microwave Brain Tomography With Stroke Detection and Classification.
    Guo L; Khosravi-Farsani M; Stancombe A; Bialkowski K; Abbosh A
    IEEE Trans Biomed Eng; 2022 Apr; 69(4):1512-1523. PubMed ID: 34694991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Validation of Microwave Tomographywith the DBIM-TwIST Algorithm for Brain StrokeDetection and Classification.
    Karadima O; Rahman M; Sotiriou I; Ghavami N; Lu P; Ahsan S; Kosmas P
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32033241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-Dimensional Microwave Head Imaging with GPU-Based FDTD and the DBIM Method.
    Lu P; Kosmas P
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Density imaging using a multiple-frequency DBIM approach.
    Lavarello R; Oelze M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Nov; 57(11):2471-9. PubMed ID: 21041134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave Bone Imaging: A Preliminary Investigation on Numerical Bone Phantoms for Bone Health Monitoring.
    Amin B; Shahzad A; O'Halloran M; Elahi MA
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33167562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional microwave imaging of realistic numerical breast phantoms via a multiple-frequency inverse scattering technique.
    Shea JD; Kosmas P; Hagness SC; Van Veen BD
    Med Phys; 2010 Aug; 37(8):4210-26. PubMed ID: 20879582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Multithreshold Iterative DBIM-Based Algorithm for the Imaging of Heterogeneous Breast Tissues.
    Ambrosanio M; Kosmas P; Pascazio V
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):509-520. PubMed ID: 29993460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and Experimental Validation of a Multiple-Frequency Microwave Tomography System Employing the DBIM-TwIST Algorithm.
    Ahsan S; Guo Z; Miao Z; Sotiriou I; Koutsoupidou M; Kallos E; Palikaras G; Kosmas P
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30332843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tomographic density imaging using modified DF-DBIM approach.
    Huy TQ; Cuc NT; Nguyen VD; Long TT; Tan TD
    Biomed Eng Lett; 2019 Nov; 9(4):449-465. PubMed ID: 31799014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beamforming-Enhanced Inverse Scattering for Microwave Breast Imaging.
    Burfeindt MJ; Shea JD; Van Veen BD; Hagness SC
    IEEE Trans Antennas Propag; 2014 Oct; 62(10):5126-5132. PubMed ID: 26663930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-Time 3D Microwave Medical Imaging With Enhanced Variational Born Iterative Method.
    Fang Y; Bakian-Dogaheh K; Moghaddam M
    IEEE Trans Med Imaging; 2023 Jan; 42(1):268-280. PubMed ID: 36166569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A wideband microwave tomography system with a novel frequency selection procedure.
    Gilmore C; Mojabi P; Zakaria A; Ostadrahimi M; Kaye C; Noghanian S; Shafai L; Pistorius S; LoVetri J
    IEEE Trans Biomed Eng; 2010 Apr; 57(4):894-904. PubMed ID: 19932993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An ultra-wideband microwave tomography system: preliminary results.
    Gilmore C; Mojabi P; Zakaria A; Ostadrahimi M; Kaye C; Noghanian S; Shafai L; Pistorius S; LoVetri J
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2288-91. PubMed ID: 19965168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave medical imaging based on sparsity and an iterative method with adaptive thresholding.
    Azghani M; Kosmas P; Marvasti F
    IEEE Trans Med Imaging; 2015 Feb; 34(2):357-65. PubMed ID: 25252275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced Fast 3-D Electromagnetic Solver for Microwave Tomography Imaging.
    Simonov N; Kim BR; Lee KJ; Jeon SI; Son SH
    IEEE Trans Med Imaging; 2017 Oct; 36(10):2160-2170. PubMed ID: 28600242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional Distorted Born Iterative Method Enhanced by Breast Boundary Extraction for Microwave Mammography.
    Noritake K; Kidera S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4819-4823. PubMed ID: 31946940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast inverse scattering solutions using the distorted Born iterative method and the multilevel fast multipole algorithm.
    Hesford AJ; Chew WC
    J Acoust Soc Am; 2010 Aug; 128(2):679-90. PubMed ID: 20707438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Microwave Imaging of Realistic Numerical Breast Phantoms Using an Enclosed Array of Multiband, Miniaturized Patch Antennas.
    Burfeindt MJ; Behdad N; Van Veen BD; Hagness SC
    IEEE Antennas Wirel Propag Lett; 2012; 11():1626-1629. PubMed ID: 25419189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compressive Sensing for Breast Microwave Imaging.
    Ambrosanio M; Pascazio V
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5109-5112. PubMed ID: 30441490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.