These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 34856101)

  • 1. Enzyme-Like Hydroxylation of Aliphatic C-H Bonds From an Isolable Co-Oxo Complex.
    Goetz MK; Schneider JE; Filatov AS; Jesse KA; Anderson JS
    J Am Chem Soc; 2021 Dec; 143(49):20849-20862. PubMed ID: 34856101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is the ruthenium analogue of compound I of cytochrome p450 an efficient oxidant? A theoretical investigation of the methane hydroxylation reaction.
    Sharma PK; De Visser SP; Ogliaro F; Shaik S
    J Am Chem Soc; 2003 Feb; 125(8):2291-300. PubMed ID: 12590559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trends in substrate hydroxylation reactions by heme and nonheme iron(IV)-oxo oxidants give correlations between intrinsic properties of the oxidant with barrier height.
    de Visser SP
    J Am Chem Soc; 2010 Jan; 132(3):1087-97. PubMed ID: 20041691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal Structure and C-H Bond-Cleaving Reactivity of a Mononuclear Co
    Kwon YM; Lee Y; Evenson GE; Jackson TA; Wang D
    J Am Chem Soc; 2020 Aug; 142(31):13435-13441. PubMed ID: 32639730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manganese-Oxygen Intermediates in O-O Bond Activation and Hydrogen-Atom Transfer Reactions.
    Rice DB; Massie AA; Jackson TA
    Acc Chem Res; 2017 Nov; 50(11):2706-2717. PubMed ID: 29064667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regioselectivity of aliphatic versus aromatic hydroxylation by a nonheme iron(II)-superoxo complex.
    Latifi R; Tahsini L; Nam W; de Visser SP
    Phys Chem Chem Phys; 2012 Feb; 14(7):2518-24. PubMed ID: 22252092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-free oxidation of aromatic carbon-hydrogen bonds through a reverse-rebound mechanism.
    Yuan C; Liang Y; Hernandez T; Berriochoa A; Houk KN; Siegel D
    Nature; 2013 Jul; 499(7457):192-6. PubMed ID: 23846658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C-H Activation by RuCo
    Amtawong J; Skjelstad BB; Handford RC; Suslick BA; Balcells D; Tilley TD
    J Am Chem Soc; 2021 Aug; 143(31):12108-12119. PubMed ID: 34318666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Axial ligand effect on the rate constant of aromatic hydroxylation by iron(IV)-oxo complexes mimicking cytochrome P450 enzymes.
    Kumar D; Sastry GN; de Visser SP
    J Phys Chem B; 2012 Jan; 116(1):718-30. PubMed ID: 22132821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinspired Olefin cis-Dihydroxylation and Aliphatic C-H Bond Hydroxylation with Dioxygen Catalyzed by a Nonheme Iron Complex.
    Chatterjee S; Bhattacharya S; Paine TK
    Inorg Chem; 2018 Aug; 57(16):10160-10169. PubMed ID: 30070832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How does the axial ligand of cytochrome P450 biomimetics influence the regioselectivity of aliphatic versus aromatic hydroxylation?
    de Visser SP; Tahsini L; Nam W
    Chemistry; 2009; 15(22):5577-87. PubMed ID: 19347895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetic aryl hydroxylation derived from alkyl hydroperoxide at a nonheme iron center. Evidence for an Fe(IV)=O oxidant.
    Jensen MP; Lange SJ; Mehn MP; Que EL; Que L
    J Am Chem Soc; 2003 Feb; 125(8):2113-28. PubMed ID: 12590539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The valence bond way: reactivity patterns of cytochrome P450 enzymes and synthetic analogs.
    Shaik S; Lai W; Chen H; Wang Y
    Acc Chem Res; 2010 Aug; 43(8):1154-65. PubMed ID: 20527755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Reactive Co
    Li Y; Handunneththige S; Farquhar ER; Guo Y; Talipov MR; Li F; Wang D
    J Am Chem Soc; 2019 Dec; 141(51):20127-20136. PubMed ID: 31794198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does hydrogen-bonding donation to manganese(IV)-oxo and iron(IV)-oxo oxidants affect the oxygen-atom transfer ability? A computational study.
    Latifi R; Sainna MA; Rybak-Akimova EV; de Visser SP
    Chemistry; 2013 Mar; 19(12):4058-68. PubMed ID: 23362213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What factors influence the rate constant of substrate epoxidation by compound I of cytochrome P450 and analogous iron(IV)-oxo oxidants?
    Kumar D; Karamzadeh B; Sastry GN; de Visser SP
    J Am Chem Soc; 2010 Jun; 132(22):7656-67. PubMed ID: 20481499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-valent iron in chemical and biological oxidations.
    Groves JT
    J Inorg Biochem; 2006 Apr; 100(4):434-47. PubMed ID: 16516297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the axial ligand on substrate sulfoxidation mediated by iron(IV)-oxo porphyrin cation radical oxidants.
    Kumar D; Sastry GN; de Visser SP
    Chemistry; 2011 May; 17(22):6196-205. PubMed ID: 21469227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manganese Catalyzed C-H Halogenation.
    Liu W; Groves JT
    Acc Chem Res; 2015 Jun; 48(6):1727-35. PubMed ID: 26042637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. To rebound or dissociate? This is the mechanistic question in C-H hydroxylation by heme and nonheme metal-oxo complexes.
    Cho KB; Hirao H; Shaik S; Nam W
    Chem Soc Rev; 2016 Mar; 45(5):1197-210. PubMed ID: 26690848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.