These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 34856104)

  • 1. Understanding How Coacervates Drive Reversible Small Molecule Reactions to Promote Molecular Complexity.
    Jacobs MI; Jira ER; Schroeder CM
    Langmuir; 2021 Dec; 37(49):14323-14335. PubMed ID: 34856104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How Droplets Can Accelerate Reactions─Coacervate Protocells as Catalytic Microcompartments.
    Smokers IBA; Visser BS; Slootbeek AD; Huck WTS; Spruijt E
    Acc Chem Res; 2024 Jul; 57(14):1885-1895. PubMed ID: 38968602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membraneless Compartmentalization Facilitates Enzymatic Cascade Reactions and Reduces Substrate Inhibition.
    Kojima T; Takayama S
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32782-32791. PubMed ID: 30179001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomolecular Chemistry in Liquid Phase Separated Compartments.
    Nakashima KK; Vibhute MA; Spruijt E
    Front Mol Biosci; 2019; 6():21. PubMed ID: 31001538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coacervate Droplets for Synthetic Cells.
    Lin Z; Beneyton T; Baret JC; Martin N
    Small Methods; 2023 Dec; 7(12):e2300496. PubMed ID: 37462244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyamine/Nucleotide Coacervates Provide Strong Compartmentalization of Mg²⁺, Nucleotides, and RNA.
    Frankel EA; Bevilacqua PC; Keating CD
    Langmuir; 2016 Mar; 32(8):2041-9. PubMed ID: 26844692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-programmed enzyme phase separation and multiphase coacervate droplet organization.
    Karoui H; Seck MJ; Martin N
    Chem Sci; 2021 Jan; 12(8):2794-2802. PubMed ID: 34164043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of macromolecular crowding on RNA/spermine complex coacervation and oligonucleotide compartmentalization.
    Marianelli AM; Miller BM; Keating CD
    Soft Matter; 2018 Jan; 14(3):368-378. PubMed ID: 29265152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the Impacts of Molecular and Macromolecular Crowding Agents on Protein-Polymer Complex Coacervates.
    Biswas S; Hecht AL; Noble SA; Huang Q; Gillilan RE; Xu AY
    Biomacromolecules; 2023 Nov; 24(11):4771-4782. PubMed ID: 37815312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme-active liquid coacervate microdroplets as artificial membraneless organelles for intracellular ROS scavenging.
    Chen Y; Yuan M; Zhang Y; Zhou S; Wang K; Wu Z; Liu J
    Biomater Sci; 2022 Aug; 10(16):4588-4595. PubMed ID: 35792669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptide-Based Coacervate-Core Vesicles with Semipermeable Membranes.
    Abbas M; Law JO; Grellscheid SN; Huck WTS; Spruijt E
    Adv Mater; 2022 Aug; 34(34):e2202913. PubMed ID: 35796384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active coacervate droplets are protocells that grow and resist Ostwald ripening.
    Nakashima KK; van Haren MHI; André AAM; Robu I; Spruijt E
    Nat Commun; 2021 Jun; 12(1):3819. PubMed ID: 34155210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic control over coacervation.
    Nakashima KK; André AAM; Spruijt E
    Methods Enzymol; 2021; 646():353-389. PubMed ID: 33453932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partitioning and Enhanced Self-Assembly of Actin in Polypeptide Coacervates.
    McCall PM; Srivastava S; Perry SL; Kovar DR; Gardel ML; Tirrell MV
    Biophys J; 2018 Apr; 114(7):1636-1645. PubMed ID: 29642033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomolecular Condensates Regulate Enzymatic Activity under a Crowded Milieu: Synchronization of Liquid-Liquid Phase Separation and Enzymatic Transformation.
    Saini B; Mukherjee TK
    J Phys Chem B; 2023 Jan; 127(1):180-193. PubMed ID: 36594499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phospholipid Membrane Formation Templated by Coacervate Droplets.
    Pir Cakmak F; Marianelli AM; Keating CD
    Langmuir; 2021 Aug; 37(34):10366-10375. PubMed ID: 34398617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A short peptide synthon for liquid-liquid phase separation.
    Abbas M; Lipiński WP; Nakashima KK; Huck WTS; Spruijt E
    Nat Chem; 2021 Nov; 13(11):1046-1054. PubMed ID: 34645986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide-based coacervates as biomimetic protocells.
    Abbas M; Lipiński WP; Wang J; Spruijt E
    Chem Soc Rev; 2021 Mar; 50(6):3690-3705. PubMed ID: 33616129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase-specific RNA accumulation and duplex thermodynamics in multiphase coacervate models for membraneless organelles.
    Choi S; Meyer MO; Bevilacqua PC; Keating CD
    Nat Chem; 2022 Oct; 14(10):1110-1117. PubMed ID: 35773489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.