These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 3485627)

  • 41. Directional properties of the auditory periphery in the guinea pig.
    Carlile S; Pettigrew AG
    Hear Res; 1987 Dec; 31(2):111-22. PubMed ID: 3446669
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sound and vibration sensitivity of VIIIth nerve fibers in the frogs Leptodactylus albilabris and Rana pipiens pipiens.
    Christensen-Dalsgaard J; Narins PM
    J Comp Physiol A; 1993; 172(6):653-62. PubMed ID: 8350283
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evolution of a sensory novelty: tympanic ears and the associated neural processing.
    Christensen-Dalsgaard J; Carr CE
    Brain Res Bull; 2008 Mar; 75(2-4):365-70. PubMed ID: 18331899
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A model for signal transmission in an ear having hair cells with free-standing stereocilia. II. Macromechanical stage.
    Rosowski JJ; Peake WT; Lynch TJ; Leong R; Weiss TF
    Hear Res; 1985; 20(2):139-55. PubMed ID: 3878838
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phase shifts in binaural stimuli provide directional cues for sound localisation in the field cricket Gryllus bimaculatus.
    Seagraves KM; Hedwig B
    J Exp Biol; 2014 Jul; 217(Pt 13):2390-8. PubMed ID: 24737767
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pinna-based spectral cues for sound localization in cat.
    Rice JJ; May BJ; Spirou GA; Young ED
    Hear Res; 1992 Mar; 58(2):132-52. PubMed ID: 1568936
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis of the mechano-acoustic influence of the tympanic cavity in the auditory system.
    Garcia-Gonzalez A; Castro-Egler C; Gonzalez-Herrera A
    Biomed Eng Online; 2016 Mar; 15():33. PubMed ID: 27029189
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sound-induced tympanal membrane motion in bushcrickets and its relationship to sensory output.
    Hummel J; Kössl M; Nowotny M
    J Exp Biol; 2011 Nov; 214(Pt 21):3596-604. PubMed ID: 21993788
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Neuronal encoding of sound direction in the auditory midbrain of the rainbow trout.
    Wubbels RJ; Schellart NA
    J Neurophysiol; 1997 Jun; 77(6):3060-74. PubMed ID: 9212257
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Directional hearing of awake, unrestrained treefrogs.
    Michelsen A; Jørgensen M; Christensen-Dalsgaard J; Capranica RR
    Naturwissenschaften; 1986 Nov; 73(11):682-3. PubMed ID: 3808081
    [No Abstract]   [Full Text] [Related]  

  • 51. Active auditory mechanics in female black‑horned tree crickets (Oecanthus nigricornis).
    Morley EL; Mason AC
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 Dec; 201(12):1147-55. PubMed ID: 26492916
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Adapting Hearing Devices to the Individual Ear Acoustics: Database and Target Response Correction Functions for Various Device Styles.
    Denk F; Ernst SMA; Ewert SD; Kollmeier B
    Trends Hear; 2018; 22():2331216518779313. PubMed ID: 29877161
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Wiener kernel analysis of inner ear function in the American bullfrog.
    van Dijk P; Wit HP; Segenhout JM; Tubis A
    J Acoust Soc Am; 1994 Feb; 95(2):904-19. PubMed ID: 8132905
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A new approach to the study of impedance characteristics of tympanic membrane.
    Bogomolov AV; Dragan SP
    Dokl Biochem Biophys; 2015; 464():269-71. PubMed ID: 26518544
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spatial hearing in Cope's gray treefrog: II. Frequency-dependent directionality in the amplitude and phase of tympanum vibrations.
    Caldwell MS; Lee N; Schrode KM; Johns AR; Christensen-Dalsgaard J; Bee MA
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2014 Apr; 200(4):285-304. PubMed ID: 24504183
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Estimating head-related transfer functions of human subjects from pressure-velocity measurements.
    Hiipakka M; Kinnari T; Pulkki V
    J Acoust Soc Am; 2012 May; 131(5):4051-61. PubMed ID: 22559378
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Stimulating effect of focused ultrasound on auditory fibers of the acoustic nerve in the frog Rana temporaria].
    Vartanian IA; Gavrilov LR; Zharskaia VD; Ratnikova GI; Tsirul'nikov EM
    Zh Evol Biokhim Fiziol; 1981; 17(5):512-8. PubMed ID: 6170194
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Acoustic mechanisms that determine the ear-canal sound pressures generated by earphones.
    Voss SE; Rosowski JJ; Shera CA; Peake WT
    J Acoust Soc Am; 2000 Mar; 107(3):1548-65. PubMed ID: 10738809
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Three-dimensional laser Doppler interferometric display of human tympanic membrane vibrations at two different frequencies and sound pressure levels.
    Konrádsson KS; Ivarsson A; Harris S
    Acta Otolaryngol Suppl; 1988; 449():183-6. PubMed ID: 3201945
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Acoustic Properties of Collagenous Matrices of Xenogenic Origin for Tympanic Membrane Reconstruction.
    Schwarz D; Pazen D; Gosz K; Schwarz S; Nünning M; Gostian AO; Koerber L; Breiter R; Rotter N; Beutner D
    Otol Neurotol; 2016 Jul; 37(6):692-7. PubMed ID: 27023013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.