These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 34856329)

  • 1. Adjustable shrinkage-thresholding projection algorithm for compressed sensing magnetic resonance imaging.
    Lang J; Gang K; Zhang C
    Magn Reson Imaging; 2022 Feb; 86():74-85. PubMed ID: 34856329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Step adaptive fast iterative shrinkage thresholding algorithm for compressively sampled MR imaging reconstruction.
    Wang W; Cao N
    Magn Reson Imaging; 2018 Nov; 53():89-97. PubMed ID: 29886107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sparse reconstruction of magnetic resonance image combined with two-step iteration and adaptive shrinkage factor.
    Li X; Feng R; Xiao F; Yin Y; Cao D; Wu X; Zhu S; Wang W
    Math Biosci Eng; 2022 Sep; 19(12):13214-13226. PubMed ID: 36654043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Projected Iterative Soft-Thresholding Algorithm for Tight Frames in Compressed Sensing Magnetic Resonance Imaging.
    Yunsong Liu ; Zhifang Zhan ; Jian-Feng Cai ; Di Guo ; Zhong Chen ; Xiaobo Qu
    IEEE Trans Med Imaging; 2016 Sep; 35(9):2130-2140. PubMed ID: 27071164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Brain functional network reconstruction based on compressed sensing and fast iterative shrinkage-thresholding algorithm].
    Guo Q; Teng Y; Tong C; Li D; Wang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Oct; 37(5):855-862. PubMed ID: 33140610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive fixed-point iterative shrinkage/thresholding algorithm for MR imaging reconstruction using compressed sensing.
    Wu G; Luo S
    Magn Reson Imaging; 2014 May; 32(4):372-8. PubMed ID: 24512794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstruction of compressively sampled MR images based on a local shrinkage thresholding algorithm with curvelet transform.
    Wang H; Zhou Y; Wu X; Wang W; Yao Q
    Med Biol Eng Comput; 2019 Oct; 57(10):2145-2158. PubMed ID: 31377962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HFIST-Net: High-throughput fast iterative shrinkage thresholding network for accelerating MR image reconstruction.
    Geng C; Jiang M; Fang X; Li Y; Jin G; Chen A; Liu F
    Comput Methods Programs Biomed; 2023 Apr; 232():107440. PubMed ID: 36881983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compressively sampled MR image reconstruction using generalized thresholding iterative algorithm.
    Elahi S; Kaleem M; Omer H
    J Magn Reson; 2018 Jan; 286():91-98. PubMed ID: 29223565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast compressed sensing-based CBCT reconstruction using Barzilai-Borwein formulation for application to on-line IGRT.
    Park JC; Song B; Kim JS; Park SH; Kim HK; Liu Z; Suh TS; Song WY
    Med Phys; 2012 Mar; 39(3):1207-17. PubMed ID: 22380351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonconvex prior image constrained compressed sensing (NCPICCS): theory and simulations on perfusion CT.
    Ramirez-Giraldo JC; Trzasko J; Leng S; Yu L; Manduca A; McCollough CH
    Med Phys; 2011 Apr; 38(4):2157-67. PubMed ID: 21626949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parallel magnetic resonance imaging acceleration with a hybrid sensing approach.
    Tran AQ; Nguyen TA; Doan PT; Tran DN; Tran DT
    Math Biosci Eng; 2021 Mar; 18(3):2288-2302. PubMed ID: 33892546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A compressed sensing-based iterative algorithm for CT reconstruction and its possible application to phase contrast imaging.
    Li X; Luo S
    Biomed Eng Online; 2011 Aug; 10():73. PubMed ID: 21849088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep neural network inspired by iterative shrinkage-thresholding algorithm with data consistency (NISTAD) for fast Undersampled MRI reconstruction.
    Qiu W; Li D; Jin X; Liu F; Sun B
    Magn Reson Imaging; 2020 Jul; 70():134-144. PubMed ID: 32353530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive continuation based smooth
    Datta S; Paul JS
    J Med Imaging (Bellingham); 2024 May; 11(3):035003. PubMed ID: 38827777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compressively sampled magnetic resonance imaging reconstruction based on split Bregman iteration with general non-uniform threshold shrinkage.
    Wang W; Cao D; Li X; Cao N
    Magn Reson Imaging; 2022 Jan; 85():297-307. PubMed ID: 34666160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Algorithm Combining Analysis-based Blind Compressed Sensing and Nonlocal Low-rank Constraints for MRI Reconstruction.
    Sun M; Tao J; Ye Z; Qiu B; Xu J; Xi C
    Curr Med Imaging Rev; 2019; 15(3):281-291. PubMed ID: 31989879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Undersampled MRI reconstruction based on spectral graph wavelet transform.
    Lang J; Zhang C; Zhu D
    Comput Biol Med; 2023 May; 157():106780. PubMed ID: 36924729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prior data assisted compressed sensing: a novel MR imaging strategy for real time tracking of lung tumors.
    Yip E; Yun J; Wachowicz K; Heikal AA; Gabos Z; Rathee S; Fallone BG
    Med Phys; 2014 Aug; 41(8):082301. PubMed ID: 25086550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compressed sensing in magnetic resonance imaging using the multi-step Fresnel domain band split transformation.
    Ito S; Arai H; Yamada Y
    Magn Reson Med Sci; 2012; 11(4):243-52. PubMed ID: 23269011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.