BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1238 related articles for article (PubMed ID: 3485663)

  • 1. A quantitative analysis of frog optic nerve regeneration: is retrograde ganglion cell death or collateral axonal loss related to selective reinnervation?
    Stelzner DJ; Strauss JA
    J Comp Neurol; 1986 Mar; 245(1):83-106. PubMed ID: 3485663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative study of the tectally projecting retinal ganglion cells in the adult frog. II. Cell survival and functional recovery after optic nerve transection.
    Singman EL; Scalia F
    J Comp Neurol; 1991 May; 307(3):351-69. PubMed ID: 1856327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Further study of the outward displacement of retinal ganglion cells during optic nerve regeneration, with a note on the normal cells of Dogiel in the adult frog.
    Singman EL; Scalia F
    J Comp Neurol; 1990 Nov; 301(1):80-92. PubMed ID: 2077052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The aberrant retino-retinal projection during optic nerve regeneration in the frog. III. Effects of crushing both nerves.
    Bohn RC; Stelzner DJ
    J Comp Neurol; 1981 Mar; 196(4):633-43. PubMed ID: 6970758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Staining of regenerated optic arbors in goldfish tectum: progressive changes in immature arbors and a comparison of mature regenerated arbors with normal arbors.
    Schmidt JT; Turcotte JC; Buzzard M; Tieman DG
    J Comp Neurol; 1988 Mar; 269(4):565-91. PubMed ID: 3372728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinal ganglion cell death during optic nerve regeneration in the frog Hyla moorei.
    Humphrey MF; Beazley LD
    J Comp Neurol; 1985 Jun; 236(3):382-402. PubMed ID: 2414337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The aberrant retino-retinal projection during optic nerve regeneration in the frog. I. Time course of formation and cells of origin.
    Bohn RC; Stelzner DJ
    J Comp Neurol; 1981 Mar; 196(4):605-20. PubMed ID: 6970756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrastructural evidence of the formation of synapses by retinal ganglion cell axons in two nonstandard targets.
    Cantore WA; Scalia F
    J Comp Neurol; 1987 Jul; 261(1):137-47. PubMed ID: 3497955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of different optic nerve lesions on retinal ganglion cell death in the frog Rana pipiens.
    Humphrey MF
    J Comp Neurol; 1987 Dec; 266(2):209-19. PubMed ID: 3501791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative study of the tectally projecting retinal ganglion cells in the adult frog: I. The size of the contralateral and ipsilateral projections.
    Singman EL; Scalia F
    J Comp Neurol; 1990 Dec; 302(4):792-809. PubMed ID: 1707068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Axonal sprouting in the optic nerve is not a prerequisite for successful regeneration.
    Dunlop SA
    J Comp Neurol; 2003 Oct; 465(3):319-34. PubMed ID: 12966558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term survival of centrally projecting axons in the optic nerve of the frog following destruction of the retina.
    Matsumoto DE; Scalia F
    J Comp Neurol; 1981 Oct; 202(1):135-55. PubMed ID: 6974743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prevention of optic nerve regeneration in the frog Hyla moorei transiently delays the death of some ganglion cells.
    Humphrey MF; Darby JE; Beazley LD
    J Comp Neurol; 1989 Jan; 279(2):187-98. PubMed ID: 2913065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Axonal regrowth in the amyelinated optic nerve of the myelin-deficient rat: ultrastructural observations and effects of ganglioside administration.
    Marciano FF; Gocht A; Dentinger MP; Hof L; Csiza CK; Barron KD
    J Comp Neurol; 1990 May; 295(2):219-34. PubMed ID: 2358514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regeneration of peptide-containing retinofugal axons into the optic tectum with reappearance of a substance P-containing lamina.
    Kuljis RO; Karten HJ
    J Comp Neurol; 1985 Oct; 240(1):1-15. PubMed ID: 2414340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tests of the regenerative capacity of tectal efferent axons in the frog, Rana pipiens.
    Lyon MJ; Stelzner DJ
    J Comp Neurol; 1987 Jan; 255(4):511-25. PubMed ID: 3029186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Axonal transport of proteoglycans in regenerating goldfish optic nerve.
    Dow KE; Levine RL; Solc MA; DaSilva O; Riopelle RJ
    Exp Neurol; 1994 Mar; 126(1):129-37. PubMed ID: 7512512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Axonal pathfinding during the regeneration of the goldfish optic pathway.
    Bernhardt R
    J Comp Neurol; 1989 Jun; 284(1):119-34. PubMed ID: 2754027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The superficial plexiform layer: a third retinal association area.
    Wieniawa-Narkiewicz E; Hughes A
    J Comp Neurol; 1992 Oct; 324(4):463-84. PubMed ID: 1430334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuroprotective effect of transcorneal electrical stimulation on the acute phase of optic nerve injury.
    Miyake K; Yoshida M; Inoue Y; Hata Y
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):2356-61. PubMed ID: 17460302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 62.