These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 34856923)

  • 21. DNAscent v2: detecting replication forks in nanopore sequencing data with deep learning.
    Boemo MA
    BMC Genomics; 2021 Jun; 22(1):430. PubMed ID: 34107894
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comprehensive evaluation of structural variant genotyping methods based on long-read sequencing data.
    Duan X; Pan M; Fan S
    BMC Genomics; 2022 Apr; 23(1):324. PubMed ID: 35461238
    [TBL] [Abstract][Full Text] [Related]  

  • 23. cnnLSV: detecting structural variants by encoding long-read alignment information and convolutional neural network.
    Ma H; Zhong C; Chen D; He H; Yang F
    BMC Bioinformatics; 2023 Mar; 24(1):119. PubMed ID: 36977976
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sprites: detection of deletions from sequencing data by re-aligning split reads.
    Zhang Z; Wang J; Luo J; Ding X; Zhong J; Wang J; Wu FX; Pan Y
    Bioinformatics; 2016 Jun; 32(12):1788-96. PubMed ID: 26833342
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving the sensitivity of long read overlap detection using grouped short k-mer matches.
    Du N; Chen J; Sun Y
    BMC Genomics; 2019 Apr; 20(Suppl 2):190. PubMed ID: 30967123
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cue: a deep-learning framework for structural variant discovery and genotyping.
    Popic V; Rohlicek C; Cunial F; Hajirasouliha I; Meleshko D; Garimella K; Maheshwari A
    Nat Methods; 2023 Apr; 20(4):559-568. PubMed ID: 36959322
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cnngeno: A high-precision deep learning based strategy for the calling of structural variation genotype.
    Bai R; Ling C; Cai L; Gao J
    Comput Biol Chem; 2021 Oct; 94():107417. PubMed ID: 33810991
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An improved approach for accurate and efficient calling of structural variations with low-coverage sequence data.
    Zhang J; Wang J; Wu Y
    BMC Bioinformatics; 2012 Apr; 13 Suppl 6(Suppl 6):S6. PubMed ID: 22537045
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fast and SNP-aware short read alignment with SALT.
    Quan W; Liu B; Wang Y
    BMC Bioinformatics; 2021 Aug; 22(Suppl 9):172. PubMed ID: 34433415
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SLHSD: hybrid scaffolding method based on short and long reads.
    Luo J; Guan T; Chen G; Yu Z; Zhai H; Yan C; Luo H
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37141142
    [TBL] [Abstract][Full Text] [Related]  

  • 31. LAMSA: fast split read alignment with long approximate matches.
    Liu B; Gao Y; Wang Y
    Bioinformatics; 2017 Jan; 33(2):192-201. PubMed ID: 27667793
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Discovery of tandem and interspersed segmental duplications using high-throughput sequencing.
    Soylev A; Le TM; Amini H; Alkan C; Hormozdiari F
    Bioinformatics; 2019 Oct; 35(20):3923-3930. PubMed ID: 30937433
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dysgu: efficient structural variant calling using short or long reads.
    Cleal K; Baird DM
    Nucleic Acids Res; 2022 May; 50(9):e53. PubMed ID: 35100420
    [TBL] [Abstract][Full Text] [Related]  

  • 34. De novo Nanopore read quality improvement using deep learning.
    LaPierre N; Egan R; Wang W; Wang Z
    BMC Bioinformatics; 2019 Nov; 20(1):552. PubMed ID: 31694525
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RepLong: de novo repeat identification using long read sequencing data.
    Guo R; Li YR; He S; Ou-Yang L; Sun Y; Zhu Z
    Bioinformatics; 2018 Apr; 34(7):1099-1107. PubMed ID: 29126180
    [TBL] [Abstract][Full Text] [Related]  

  • 36. FindCSV: a long-read based method for detecting complex structural variations.
    Zheng Y; Shang X
    BMC Bioinformatics; 2024 Sep; 25(1):315. PubMed ID: 39342151
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DeepSSV: detecting somatic small variants in paired tumor and normal sequencing data with convolutional neural network.
    Meng J; Victor B; He Z; Liu H; Jiang T
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33164053
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding.
    Min X; Zeng W; Chen N; Chen T; Jiang R
    Bioinformatics; 2017 Jul; 33(14):i92-i101. PubMed ID: 28881969
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SLR: a scaffolding algorithm based on long reads and contig classification.
    Luo J; Lyu M; Chen R; Zhang X; Luo H; Yan C
    BMC Bioinformatics; 2019 Oct; 20(1):539. PubMed ID: 31666010
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Apollo: a sequencing-technology-independent, scalable and accurate assembly polishing algorithm.
    Firtina C; Kim JS; Alser M; Senol Cali D; Cicek AE; Alkan C; Mutlu O
    Bioinformatics; 2020 Jun; 36(12):3669-3679. PubMed ID: 32167530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.