These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 34857014)

  • 21. Evolved genetic and phenotypic differences due to mitochondrial-nuclear interactions.
    Baris TZ; Wagner DN; Dayan DI; Du X; Blier PU; Pichaud N; Oleksiak MF; Crawford DL
    PLoS Genet; 2017 Mar; 13(3):e1006517. PubMed ID: 28362806
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mitochondrial regulation of epigenetics and its role in human diseases.
    Minocherhomji S; Tollefsbol TO; Singh KK
    Epigenetics; 2012 Apr; 7(4):326-34. PubMed ID: 22419065
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lack of transcriptional coordination between mitochondrial and nuclear oxidative phosphorylation genes in the presence of two divergent mitochondrial genomes.
    Xu R; Iannello M; Havird JC; Milani L; Ghiselli F
    Zool Res; 2022 Jan; 43(1):111-128. PubMed ID: 34904419
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nuclear genes involved in mitochondria-to-nucleus communication in breast cancer cells.
    Delsite R; Kachhap S; Anbazhagan R; Gabrielson E; Singh KK
    Mol Cancer; 2002 Nov; 1():6. PubMed ID: 12495447
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The oxidative phosphorylation (OXPHOS) system: nuclear genes and human genetic diseases.
    van den Heuvel L; Smeitink J
    Bioessays; 2001 Jun; 23(6):518-25. PubMed ID: 11385631
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metazoan OXPHOS gene families: evolutionary forces at the level of mitochondrial and nuclear genomes.
    Saccone C; Lanave C; De Grassi A
    Biochim Biophys Acta; 2006; 1757(9-10):1171-8. PubMed ID: 16781661
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two genomes, one cell: Mitochondrial-nuclear coordination via epigenetic pathways.
    Wiese M; Bannister AJ
    Mol Metab; 2020 Aug; 38():100942. PubMed ID: 32217072
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nuclear genetic regulation of the human mitochondrial transcriptome.
    Ali AT; Boehme L; Carbajosa G; Seitan VC; Small KS; Hodgkinson A
    Elife; 2019 Feb; 8():. PubMed ID: 30775970
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MOTS-c: A Mitochondrial-Encoded Regulator of the Nucleus.
    Benayoun BA; Lee C
    Bioessays; 2019 Sep; 41(9):e1900046. PubMed ID: 31378979
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synchronized mitochondrial and cytosolic translation programs.
    Couvillion MT; Soto IC; Shipkovenska G; Churchman LS
    Nature; 2016 May; 533(7604):499-503. PubMed ID: 27225121
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mitochondrial-nuclear co-evolution and its effects on OXPHOS activity and regulation.
    Bar-Yaacov D; Blumberg A; Mishmar D
    Biochim Biophys Acta; 2012; 1819(9-10):1107-11. PubMed ID: 22044624
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Does mitochondrial DNA evolution in metazoa drive the origin of new mitochondrial proteins?
    van Esveld SL; Huynen MA
    IUBMB Life; 2018 Dec; 70(12):1240-1250. PubMed ID: 30281911
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Mitochondrial-Encoded Peptide MOTS-c Translocates to the Nucleus to Regulate Nuclear Gene Expression in Response to Metabolic Stress.
    Kim KH; Son JM; Benayoun BA; Lee C
    Cell Metab; 2018 Sep; 28(3):516-524.e7. PubMed ID: 29983246
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Silencing of the nuclear RPS10 gene encoding mitochondrial ribosomal protein alters translation in arabidopsis mitochondria.
    Kwasniak M; Majewski P; Skibior R; Adamowicz A; Czarna M; Sliwinska E; Janska H
    Plant Cell; 2013 May; 25(5):1855-67. PubMed ID: 23723321
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitochondria and cancer.
    Máximo V; Lima J; Soares P; Sobrinho-Simões M
    Virchows Arch; 2009 May; 454(5):481-95. PubMed ID: 19343360
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mitochondrial miRNA Determines Chemoresistance by Reprogramming Metabolism and Regulating Mitochondrial Transcription.
    Fan S; Tian T; Chen W; Lv X; Lei X; Zhang H; Sun S; Cai L; Pan G; He L; Ou Z; Lin X; Wang X; Perez MF; Tu Z; Ferrone S; Tannous BA; Li J
    Cancer Res; 2019 Mar; 79(6):1069-1084. PubMed ID: 30659020
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Replication stress in mitochondria.
    Ricchetti M
    Mutat Res; 2018 Mar; 808():93-102. PubMed ID: 29523336
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enterococcus faecalis infection causes inflammation, intracellular oxphos-independent ROS production, and DNA damage in human gastric cancer cells.
    Strickertsson JA; Desler C; Martin-Bertelsen T; Machado AM; Wadstrøm T; Winther O; Rasmussen LJ; Friis-Hansen L
    PLoS One; 2013; 8(4):e63147. PubMed ID: 23646188
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of skeletal muscle oxidative phenotype by classical NF-κB signalling.
    Remels AH; Gosker HR; Bakker J; Guttridge DC; Schols AM; Langen RC
    Biochim Biophys Acta; 2013 Aug; 1832(8):1313-25. PubMed ID: 23563317
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The mitochondrial genome in human adaptive radiation and disease: on the road to therapeutics and performance enhancement.
    Wallace DC
    Gene; 2005 Jul; 354():169-80. PubMed ID: 16024186
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.