These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 34857258)

  • 21. Polyethylene glycol diacrylate scaffold filled with cell-laden methacrylamide gelatin/alginate hydrogels used for cartilage repair.
    Zhang X; Yan Z; Guan G; Lu Z; Yan S; Du A; Wang L; Li Q
    J Biomater Appl; 2022 Jan; 36(6):1019-1032. PubMed ID: 34605703
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrically Conductive and 3D-Printable Oxidized Alginate-Gelatin Polypyrrole:PSS Hydrogels for Tissue Engineering.
    Distler T; Polley C; Shi F; Schneidereit D; Ashton MD; Friedrich O; Kolb JF; Hardy JG; Detsch R; Seitz H; Boccaccini AR
    Adv Healthc Mater; 2021 May; 10(9):e2001876. PubMed ID: 33711199
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation.
    Sahai N; Gogoi M; Tewari RP
    Curr Med Imaging; 2021; 17(7):832-842. PubMed ID: 33334294
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D-printed titanium scaffolds loaded with gelatin hydrogel containing strontium-doped silver nanoparticles promote osteoblast differentiation and antibacterial activity for bone tissue engineering.
    Anushikaa R; Ganesh SS; Victoria VSS; Shanmugavadivu A; Lavanya K; Lekhavadhani S; Selvamurugan N
    Biotechnol J; 2024 Aug; 19(8):e2400288. PubMed ID: 39115337
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The performance of 3D bioscaffolding based on a human periodontal ligament stem cell printing technique.
    Tian Y; Liu M; Liu Y; Shi C; Wang Y; Liu T; Huang Y; Zhong P; Dai J; Liu X
    J Biomed Mater Res A; 2021 Jul; 109(7):1209-1219. PubMed ID: 33021062
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ionically and Enzymatically Dual Cross-Linked Oxidized Alginate Gelatin Hydrogels with Tunable Stiffness and Degradation Behavior for Tissue Engineering.
    Distler T; McDonald K; Heid S; Karakaya E; Detsch R; Boccaccini AR
    ACS Biomater Sci Eng; 2020 Jul; 6(7):3899-3914. PubMed ID: 33463325
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of 3-dimensional Bioprinting Alginate/Gelatin Hydrogel Scaffold Extract on Proliferation and Differentiation of Human Dental Pulp Stem Cells.
    Yu H; Zhang X; Song W; Pan T; Wang H; Ning T; Wei Q; Xu HHK; Wu B; Ma D
    J Endod; 2019 Jun; 45(6):706-715. PubMed ID: 31056297
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of Antibacterial, Osteo-Inductor 3D Printed Aerogel-Based Scaffolds by Incorporation of Drug Laden Hollow Mesoporous Silica Microparticles into the Self-Assembled Silk Fibroin Biopolymer.
    Ng P; Pinho AR; Gomes MC; Demidov Y; Krakor E; Grume D; Herb M; Lê K; Mano J; Mathur S; Maleki H
    Macromol Biosci; 2022 Apr; 22(4):e2100442. PubMed ID: 35029037
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Designing Porous Bone Tissue Engineering Scaffolds with Enhanced Mechanical Properties from Composite Hydrogels Composed of Modified Alginate, Gelatin, and Bioactive Glass.
    Sarker B; Li W; Zheng K; Detsch R; Boccaccini AR
    ACS Biomater Sci Eng; 2016 Dec; 2(12):2240-2254. PubMed ID: 33465897
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Influence of the stiffness of three-dimensionally bioprinted extracellular matrix analogue on the differentiation of bone mesenchymal stem cells into skin appendage cells].
    ; Zhang YJ; Li JJ; Yao B; Song W; Huang S; Fu XB
    Zhonghua Shao Shang Za Zhi; 2020 Nov; 36(11):1013-1023. PubMed ID: 33238684
    [No Abstract]   [Full Text] [Related]  

  • 31. Evaluation of fibroblasts adhesion and proliferation on alginate-gelatin crosslinked hydrogel.
    Sarker B; Singh R; Silva R; Roether JA; Kaschta J; Detsch R; Schubert DW; Cicha I; Boccaccini AR
    PLoS One; 2014; 9(9):e107952. PubMed ID: 25268892
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering 3D-printed core-shell hydrogel scaffolds reinforced with hybrid hydroxyapatite/polycaprolactone nanoparticles for in vivo bone regeneration.
    El-Habashy SE; El-Kamel AH; Essawy MM; Abdelfattah EA; Eltaher HM
    Biomater Sci; 2021 Jun; 9(11):4019-4039. PubMed ID: 33899858
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-Dimensional-Printable Thermo/Photo-Cross-Linked Methacrylated Chitosan-Gelatin Hydrogel Composites for Tissue Engineering.
    Osi AR; Zhang H; Chen J; Zhou Y; Wang R; Fu J; Müller-Buschbaum P; Zhong Q
    ACS Appl Mater Interfaces; 2021 May; 13(19):22902-22913. PubMed ID: 33960765
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional printing of chemically crosslinked gelatin hydrogels for adipose tissue engineering.
    Contessi Negrini N; Celikkin N; Tarsini P; Farè S; Święszkowski W
    Biofabrication; 2020 Jan; 12(2):025001. PubMed ID: 31715587
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D printable SiO
    Roopavath UK; Soni R; Mahanta U; Deshpande AS; Rath SN
    RSC Adv; 2019 Jul; 9(41):23832-23842. PubMed ID: 35530605
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioactive nanoparticle reinforced alginate/gelatin bioink for the maintenance of stem cell stemness.
    Li J; Zhang Y; Enhe J; Yao B; Wang Y; Zhu D; Li Z; Song W; Duan X; Yuan X; Fu X; Huang S
    Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112193. PubMed ID: 34082990
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigating the Effect of Processing and Material Parameters of Alginate Dialdehyde-Gelatin (ADA-GEL)-Based Hydrogels on Stiffness by XGB Machine Learning Model.
    Ege D; Boccaccini AR
    Bioengineering (Basel); 2024 Apr; 11(5):. PubMed ID: 38790283
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3-Dimensional cell-laden nano-hydroxyapatite/protein hydrogels for bone regeneration applications.
    Sadat-Shojai M; Khorasani MT; Jamshidi A
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():835-843. PubMed ID: 25687015
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Scaffold for liver tissue engineering: Exploring the potential of fibrin incorporated alginate dialdehyde-gelatin hydrogel.
    Rajalekshmi R; Kaladevi Shaji A; Joseph R; Bhatt A
    Int J Biol Macromol; 2021 Jan; 166():999-1008. PubMed ID: 33166555
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D Printed Porous Cellulose Nanocomposite Hydrogel Scaffolds.
    Sultan S; Mathew AP
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31081812
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.