These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 34857261)
1. 3D reactive inkjet printing of poly-ɛ-lysine/gellan gum hydrogels for potential corneal constructs. Duffy GL; Liang H; Williams RL; Wellings DA; Black K Mater Sci Eng C Mater Biol Appl; 2021 Dec; 131():112476. PubMed ID: 34857261 [TBL] [Abstract][Full Text] [Related]
2. The current state of the art in gellan-based printing inks in tissue engineering. Cernencu AI; Ioniță M Carbohydr Polym; 2023 Jun; 309():120676. PubMed ID: 36906360 [TBL] [Abstract][Full Text] [Related]
3. Silk fibroin reactive inks for 3D printing crypt-like structures. Heichel DL; Tumbic JA; Boch ME; Ma AWK; Burke KA Biomed Mater; 2020 Sep; 15(5):055037. PubMed ID: 32924975 [TBL] [Abstract][Full Text] [Related]
4. Characterization of Tunable Poly-ε-Lysine-Based Hydrogels for Corneal Tissue Engineering. Lace R; Duffy GL; Gallagher AG; Doherty KG; Maklad O; Wellings DA; Williams RL Macromol Biosci; 2021 Jul; 21(7):e2100036. PubMed ID: 33955160 [TBL] [Abstract][Full Text] [Related]
5. Modified gellan gum-based hydrogel with enhanced mechanical properties for application as a cell carrier for cornea endothelial cells. Seo JS; Tumursukh NE; Choi JH; Song Y; Jeon G; Kim NE; Kim SJ; Kim N; Song JE; Khang G Int J Biol Macromol; 2023 May; 236():123878. PubMed ID: 36894057 [TBL] [Abstract][Full Text] [Related]
6. Gellan Fluid Gel as a Versatile Support Bath Material for Fluid Extrusion Bioprinting. Compaan AM; Song K; Huang Y ACS Appl Mater Interfaces; 2019 Feb; 11(6):5714-5726. PubMed ID: 30644714 [TBL] [Abstract][Full Text] [Related]
7. 3D bioprinting of gellan gum-based hydrogels tethered with laminin-derived peptides for improved cellular behavior. Alheib O; da Silva LP; Youn YH; Kwon IK; Reis RL; Correlo VM J Biomed Mater Res A; 2022 Oct; 110(10):1655-1668. PubMed ID: 35678701 [TBL] [Abstract][Full Text] [Related]
8. 3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering. Kumar A; I Matari IA; Han SS Biofabrication; 2020 Mar; 12(2):025029. PubMed ID: 32029691 [TBL] [Abstract][Full Text] [Related]
9. Composite Inks for Extrusion Printing of Biological and Biomedical Constructs. Ravanbakhsh H; Bao G; Luo Z; Mongeau LG; Zhang YS ACS Biomater Sci Eng; 2021 Sep; 7(9):4009-4026. PubMed ID: 34510905 [TBL] [Abstract][Full Text] [Related]
10. Development and thorough characterization of the processing steps of an ink for 3D printing for bone tissue engineering. Müller M; Fisch P; Molnar M; Eggert S; Binelli M; Maniura-Weber K; Zenobi-Wong M Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110510. PubMed ID: 31924006 [TBL] [Abstract][Full Text] [Related]
11. High-resolution 3D printing of xanthan gum/nanocellulose bio-inks. Baniasadi H; Kimiaei E; Polez RT; Ajdary R; Rojas OJ; Österberg M; Seppälä J Int J Biol Macromol; 2022 Jun; 209(Pt B):2020-2031. PubMed ID: 35500781 [TBL] [Abstract][Full Text] [Related]
12. 3D printing of layered brain-like structures using peptide modified gellan gum substrates. Lozano R; Stevens L; Thompson BC; Gilmore KJ; Gorkin R; Stewart EM; in het Panhuis M; Romero-Ortega M; Wallace GG Biomaterials; 2015 Oct; 67():264-73. PubMed ID: 26231917 [TBL] [Abstract][Full Text] [Related]
13. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Sorkio A; Koch L; Koivusalo L; Deiwick A; Miettinen S; Chichkov B; Skottman H Biomaterials; 2018 Jul; 171():57-71. PubMed ID: 29684677 [TBL] [Abstract][Full Text] [Related]
14. Enabling Free-Standing 3D Hydrogel Microstructures with Microreactive Inkjet Printing. Teo MY; Kee S; RaviChandran N; Stuart L; Aw KC; Stringer J ACS Appl Mater Interfaces; 2020 Jan; 12(1):1832-1839. PubMed ID: 31820627 [TBL] [Abstract][Full Text] [Related]
15. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542 [TBL] [Abstract][Full Text] [Related]
16. Multiscale porosity in a 3D printed gellan-gelatin composite for bone tissue engineering. Gupta D; Vashisth P; Bellare J Biomed Mater; 2021 Apr; 16(3):. PubMed ID: 33761468 [TBL] [Abstract][Full Text] [Related]
17. Cell loaded 3D bioprinted GelMA hydrogels for corneal stroma engineering. Kilic Bektas C; Hasirci V Biomater Sci; 2019 Dec; 8(1):438-449. PubMed ID: 31746842 [TBL] [Abstract][Full Text] [Related]
18. Anti-angiogenic potential of VEGF blocker dendron loaded on to gellan gum hydrogels for tissue engineering applications. Perugini V; Guildford AL; Silva-Correia J; Oliveira JM; Meikle ST; Reis RL; Santin M J Tissue Eng Regen Med; 2018 Feb; 12(2):e669-e678. PubMed ID: 27718530 [TBL] [Abstract][Full Text] [Related]
19. Three-Dimensional-Printable Thermo/Photo-Cross-Linked Methacrylated Chitosan-Gelatin Hydrogel Composites for Tissue Engineering. Osi AR; Zhang H; Chen J; Zhou Y; Wang R; Fu J; Müller-Buschbaum P; Zhong Q ACS Appl Mater Interfaces; 2021 May; 13(19):22902-22913. PubMed ID: 33960765 [TBL] [Abstract][Full Text] [Related]
20. Inkjet-Spray Hybrid Printing for 3D Freeform Fabrication of Multilayered Hydrogel Structures. Yoon S; Park JA; Lee HR; Yoon WH; Hwang DS; Jung S Adv Healthc Mater; 2018 Jul; 7(14):e1800050. PubMed ID: 29708307 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]