BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 34857922)

  • 1. The potential of mitochondrial genome engineering.
    Silva-Pinheiro P; Minczuk M
    Nat Rev Genet; 2022 Apr; 23(4):199-214. PubMed ID: 34857922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Therapeutic potential of engineering the mitochondrial genome.
    Liu M; Ji W; Zhao X; Liu X; Hu JF; Cui J
    Biochim Biophys Acta Mol Basis Dis; 2023 Oct; 1869(7):166804. PubMed ID: 37429560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of mitochondrial gene-editing strategies and their potential applications in mitochondrial hereditary diseases: a review.
    Gao Y; Guo L; Wang F; Wang Y; Li P; Zhang D
    Cytotherapy; 2024 Jan; 26(1):11-24. PubMed ID: 37930294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing.
    Mok BY; de Moraes MH; Zeng J; Bosch DE; Kotrys AV; Raguram A; Hsu F; Radey MC; Peterson SB; Mootha VK; Mougous JD; Liu DR
    Nature; 2020 Jul; 583(7817):631-637. PubMed ID: 32641830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trends and prospects in mitochondrial genome editing.
    Phan HTL; Lee H; Kim K
    Exp Mol Med; 2023 May; 55(5):871-878. PubMed ID: 37121968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo mitochondrial base editing via adeno-associated viral delivery to mouse post-mitotic tissue.
    Silva-Pinheiro P; Nash PA; Van Haute L; Mutti CD; Turner K; Minczuk M
    Nat Commun; 2022 Feb; 13(1):750. PubMed ID: 35136065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gaining Insight into Mitochondrial Genetic Variation and Downstream Pathophysiology: What Can i(PSCs) Do?
    Moreira JD; Gopal DM; Kotton DN; Fetterman JL
    Genes (Basel); 2021 Oct; 12(11):. PubMed ID: 34828274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9-mediated base editors and their prospects for mitochondrial genome engineering.
    Eghbalsaied S; Lawler C; Petersen B; Hajiyev RA; Bischoff SR; Frankenberg S
    Gene Ther; 2024 May; 31(5-6):209-223. PubMed ID: 38177342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling mitochondrial DNA diseases: from base editing to pluripotent stem-cell-derived organoids.
    Tolle I; Tiranti V; Prigione A
    EMBO Rep; 2023 Apr; 24(4):e55678. PubMed ID: 36876467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current progress with mammalian models of mitochondrial DNA disease.
    Stewart JB
    J Inherit Metab Dis; 2021 Mar; 44(2):325-342. PubMed ID: 33099782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Therapeutic Manipulation of mtDNA Heteroplasmy: A Shifting Perspective.
    Jackson CB; Turnbull DM; Minczuk M; Gammage PA
    Trends Mol Med; 2020 Jul; 26(7):698-709. PubMed ID: 32589937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tools for editing the mammalian mitochondrial genome.
    Moraes CT
    Hum Mol Genet; 2024 May; 33(R1):R92-R99. PubMed ID: 38779768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current strategies towards therapeutic manipulation of mtDNA heteroplasmy.
    Pereira CV; Moraes CT
    Front Biosci (Landmark Ed); 2017 Jan; 22(6):991-1010. PubMed ID: 27814659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concise Review: Heteroplasmic Mitochondrial DNA Mutations and Mitochondrial Diseases: Toward iPSC-Based Disease Modeling, Drug Discovery, and Regenerative Therapeutics.
    Hatakeyama H; Goto Y
    Stem Cells; 2016 Apr; 34(4):801-8. PubMed ID: 26850516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial genome editing: strategies, challenges, and applications.
    Lim K
    BMB Rep; 2024 Jan; 57(1):19-29. PubMed ID: 38178652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in methods for reducing mitochondrial DNA disease by replacing or manipulating the mitochondrial genome.
    Rai PK; Craven L; Hoogewijs K; Russell OM; Lightowlers RN
    Essays Biochem; 2018 Jul; 62(3):455-465. PubMed ID: 29950320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo.
    Gammage PA; Viscomi C; Simard ML; Costa ASH; Gaude E; Powell CA; Van Haute L; McCann BJ; Rebelo-Guiomar P; Cerutti R; Zhang L; Rebar EJ; Zeviani M; Frezza C; Stewart JB; Minczuk M
    Nat Med; 2018 Nov; 24(11):1691-1695. PubMed ID: 30250142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs.
    Bacman SR; Williams SL; Pinto M; Peralta S; Moraes CT
    Nat Med; 2013 Sep; 19(9):1111-3. PubMed ID: 23913125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondria and Their Role in Human Reproduction.
    Zou W; Slone J; Cao Y; Huang T
    DNA Cell Biol; 2020 Aug; 39(8):1370-1378. PubMed ID: 31603716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations.
    Gammage PA; Rorbach J; Vincent AI; Rebar EJ; Minczuk M
    EMBO Mol Med; 2014 Apr; 6(4):458-66. PubMed ID: 24567072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.