These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

460 related articles for article (PubMed ID: 34858342)

  • 1. miRNA, lncRNA and circRNA: Targeted Molecules Full of Therapeutic Prospects in the Development of Diabetic Retinopathy.
    Chang X; Zhu G; Cai Z; Wang Y; Lian R; Tang X; Ma C; Fu S
    Front Endocrinol (Lausanne); 2021; 12():771552. PubMed ID: 34858342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noncoding RNAs Are Promising Therapeutic Targets for Diabetic Retinopathy: An Updated Review (2017-2022).
    Wang M; Li Q; Jin M; Wang Z; Zhang X; Sun X; Luo Y
    Biomolecules; 2022 Nov; 12(12):. PubMed ID: 36551201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic and therapeutic perspectives of non-coding RNA-modulated apoptotic signaling in diabetic retinopathy.
    Wu Q; Liu C; Shu X; Duan L
    Cell Biol Toxicol; 2024 Jul; 40(1):53. PubMed ID: 38970639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of noncoding RNAs in diabetic retinopathy: Mechanisms and therapeutic implications.
    Xiao J; Xu Z
    Life Sci; 2024 Nov; 357():123092. PubMed ID: 39368772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of miRNAs and long noncoding RNAs in the progression of diabetic retinopathy.
    Gong Q; Su G
    Biosci Rep; 2017 Dec; 37(6):. PubMed ID: 29074557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. circRNA_0084043 contributes to the progression of diabetic retinopathy via sponging miR-140-3p and inducing TGFA gene expression in retinal pigment epithelial cells.
    Li Y; Cheng T; Wan C; Cang Y
    Gene; 2020 Jul; 747():144653. PubMed ID: 32259630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research Status of Differentially Expressed Noncoding RNAs in Type 2 Diabetes Patients.
    Shi R; Chen Y; Liao Y; Li R; Lin C; Xiu L; Yu H; Ding Y
    Biomed Res Int; 2020; 2020():3816056. PubMed ID: 33274206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noncoding RNA crosstalk in brain health and diseases.
    Mehta SL; Chokkalla AK; Vemuganti R
    Neurochem Int; 2021 Oct; 149():105139. PubMed ID: 34280469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LncRNA AK077216 is downregulated in diabetic retinopathy and inhibited the apoptosis of retinal pigment epithelial cells by downregulating miR-383.
    Zhang X; Shi E; Yang L; Fu W; Hu F; Zhou X
    Endocr J; 2019 Nov; 66(11):1011-1016. PubMed ID: 31391356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circular RNA-ZNF532 regulates diabetes-induced retinal pericyte degeneration and vascular dysfunction.
    Jiang Q; Liu C; Li CP; Xu SS; Yao MD; Ge HM; Sun YN; Li XM; Zhang SJ; Shan K; Liu BH; Yao J; Zhao C; Yan B
    J Clin Invest; 2020 Jul; 130(7):3833-3847. PubMed ID: 32343678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circular RNAs: Potential Star Molecules Involved in Diabetic Retinopathy.
    He M; Zhou R; Liu S; Cheng W; Wang W
    Curr Eye Res; 2021 Mar; 46(3):277-283. PubMed ID: 32865040
    [No Abstract]   [Full Text] [Related]  

  • 12. A comprehensive competitive endogenous RNA network pinpoints key molecules in diabetic retinopathy.
    Wu Y; Jia K; Wu H; Sang A; Wang L; Shi L; Jiang K; Dong J
    Mol Med Rep; 2019 Feb; 19(2):851-860. PubMed ID: 30535492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. miRNA, lncRNA and circRNA: targeted molecules with therapeutic promises in Mycoplasma pneumoniae infection.
    Gan T; Yu J; He J
    Arch Microbiol; 2023 Jul; 205(8):293. PubMed ID: 37477725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circ_0084043 Facilitates High Glucose-Induced Retinal Pigment Epithelial Cell Injury by Activating miR-128-3p/TXNIP-Mediated Wnt/β-Catenin Signaling Pathway.
    Zhang Y; Zheng L; Xu H; Ling L
    J Cardiovasc Pharmacol; 2021 Jul; 78(1):e112-e121. PubMed ID: 34173806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long noncoding RNAs sustain high expression levels of exogenous octamer-binding protein 4 by sponging regulatory microRNAs during cellular reprogramming.
    Zhang X; Zhang J; Zheng K; Zhang H; Pei X; Yin Z; Wen D; Kong Q
    J Biol Chem; 2019 Nov; 294(47):17863-17874. PubMed ID: 31624145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions Among lncRNAs/circRNAs, miRNAs, and mRNAs in Neuropathic Pain.
    Song G; Yang Z; Guo J; Zheng Y; Su X; Wang X
    Neurotherapeutics; 2020 Jul; 17(3):917-931. PubMed ID: 32632773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of lncRNAs and circRNAs in Orofacial Clefts.
    Seelan RS; Greene RM; Pisano MM
    Microrna; 2023; 12(3):171-176. PubMed ID: 38009000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of circRNA/lncRNA-miRNA interactions and applications in disease and drug research.
    Ma B; Wang S; Wu W; Shan P; Chen Y; Meng J; Xing L; Yun J; Hao L; Wang X; Li S; Guo Y
    Biomed Pharmacother; 2023 Jun; 162():114672. PubMed ID: 37060662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of expression profiling of circular RNAs in vitreous humour between diabetic retinopathy and non-diabetes mellitus patients.
    He M; Wang W; Yu H; Wang D; Cao D; Zeng Y; Wu Q; Zhong P; Cheng Z; Hu Y; Zhang L
    Acta Diabetol; 2020 Apr; 57(4):479-489. PubMed ID: 31749049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exosomal ncRNAs: Novel therapeutic target and biomarker for diabetic complications.
    Xu YX; Pu SD; Li X; Yu ZW; Zhang YT; Tong XW; Shan YY; Gao XY
    Pharmacol Res; 2022 Apr; 178():106135. PubMed ID: 35192956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.