These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 34858446)

  • 1. Time-Series Growth Prediction Model Based on U-Net and Machine Learning in
    Chang S; Lee U; Hong MJ; Jo YD; Kim JB
    Front Plant Sci; 2021; 12():721512. PubMed ID: 34858446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenomics based prediction of plant biomass and leaf area in wheat using machine learning approaches.
    Singh B; Kumar S; Elangovan A; Vasht D; Arya S; Duc NT; Swami P; Pawar GS; Raju D; Krishna H; Sathee L; Dalal M; Sahoo RN; Chinnusamy V
    Front Plant Sci; 2023; 14():1214801. PubMed ID: 37448870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental normalization of phenomics data generated by high throughput plant phenotyping systems.
    Lozano-Claros D; Meng X; Custovic E; Deng G; Berkowitz O; Whelan J; Lewsey MG
    Plant Methods; 2020; 16():111. PubMed ID: 32817754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Throughput Phenotyping (HTP) Data Reveal Dosage Effect at Growth Stages in
    Chang S; Lee U; Hong MJ; Jo YD; Kim JB
    Plants (Basel); 2020 Apr; 9(5):. PubMed ID: 32349236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of plant-level tomato biomass and yield using machine learning with unmanned aerial vehicle imagery.
    Tatsumi K; Igarashi N; Mengxue X
    Plant Methods; 2021 Jul; 17(1):77. PubMed ID: 34266447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leaf-Movement-Based Growth Prediction Model Using Optical Flow Analysis and Machine Learning in Plant Factory.
    Nagano S; Moriyuki S; Wakamori K; Mineno H; Fukuda H
    Front Plant Sci; 2019; 10():227. PubMed ID: 30967880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Plant Phenomics: A Deep Learning Platform for Complex Plant Phenotyping Tasks.
    Ubbens JR; Stavness I
    Front Plant Sci; 2017; 8():1190. PubMed ID: 28736569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput phenotyping to dissect genotypic differences in safflower for drought tolerance.
    Joshi S; Thoday-Kennedy E; Daetwyler HD; Hayden M; Spangenberg G; Kant S
    PLoS One; 2021; 16(7):e0254908. PubMed ID: 34297757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional characterization of a novel Brassica LEAFY homolog from Indian mustard: Expression pattern and gain-of-function studies.
    Dhakate P; Tyagi S; Singh A; Singh A
    Plant Sci; 2017 May; 258():29-44. PubMed ID: 28330561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SlypNet: Spikelet-based yield prediction of wheat using advanced plant phenotyping and computer vision techniques.
    Maji AK; Marwaha S; Kumar S; Arora A; Chinnusamy V; Islam S
    Front Plant Sci; 2022; 13():889853. PubMed ID: 35991448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-Wide Association Study for Major Biofuel Traits in Sorghum Using Minicore Collection.
    Rayaprolu L; Selvanayagam S; Rao DM; Gupta R; Das RR; Rathore A; Gandham P; Kiranmayee KNSU; Deshpande SP; Are AK
    Protein Pept Lett; 2021; 28(8):909-928. PubMed ID: 33588716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From Organelle Morphology to Whole-Plant Phenotyping: A Phenotypic Detection Method Based on Deep Learning.
    Liu H; Zhu H; Liu F; Deng L; Wu G; Han Z; Zhao L
    Plants (Basel); 2024 Apr; 13(9):. PubMed ID: 38732392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic mapping of the early responses to salt stress in Arabidopsis thaliana.
    Awlia M; Alshareef N; Saber N; Korte A; Oakey H; Panzarová K; Trtílek M; Negrão S; Tester M; Julkowska MM
    Plant J; 2021 Jul; 107(2):544-563. PubMed ID: 33964046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperspectral imaging combined with machine learning as a tool to obtain high-throughput plant salt-stress phenotyping.
    Feng X; Zhan Y; Wang Q; Yang X; Yu C; Wang H; Tang Z; Jiang D; Peng C; He Y
    Plant J; 2020 Mar; 101(6):1448-1461. PubMed ID: 31680357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning models for net photosynthetic rate prediction using poplar leaf phenotype data.
    Zhang XY; Huang Z; Su X; Siu A; Song Y; Zhang D; Fang Q
    PLoS One; 2020; 15(2):e0228645. PubMed ID: 32045452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Longitudinal Traits Derived from High-Throughput Phenomics in Contrasting Environments Using Genomic Legendre Polynomials and B-Splines.
    Momen M; Campbell MT; Walia H; Morota G
    G3 (Bethesda); 2019 Oct; 9(10):3369-3380. PubMed ID: 31427454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is atmospheric CO
    Ward JK; Antonovics J; Thomas RB; Strain BR
    Oecologia; 2000 May; 123(3):330-341. PubMed ID: 28308587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of Phenomics for Differentiation of Mungbean (
    Rane J; Raina SK; Govindasamy V; Bindumadhava H; Hanjagi P; Giri R; Jangid KK; Kumar M; Nair RM
    Front Plant Sci; 2021; 12():692564. PubMed ID: 34234800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Corn Yield Prediction Potential at Various Growth Phases Using a Process-Based Model and Deep Learning.
    Ren Y; Li Q; Du X; Zhang Y; Wang H; Shi G; Wei M
    Plants (Basel); 2023 Jan; 12(3):. PubMed ID: 36771530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A growth phenotyping pipeline for Arabidopsis thaliana integrating image analysis and rosette area modeling for robust quantification of genotype effects.
    Arvidsson S; Pérez-Rodríguez P; Mueller-Roeber B
    New Phytol; 2011 Aug; 191(3):895-907. PubMed ID: 21569033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.