BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 34859349)

  • 1. Water and soil contaminated by arsenic: the use of microorganisms and plants in bioremediation.
    Bertin PN; Crognale S; Plewniak F; Battaglia-Brunet F; Rossetti S; Mench M
    Environ Sci Pollut Res Int; 2022 Feb; 29(7):9462-9489. PubMed ID: 34859349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Genomic Outlook on Bioremediation: The Case of Arsenic Removal.
    Plewniak F; Crognale S; Rossetti S; Bertin PN
    Front Microbiol; 2018; 9():820. PubMed ID: 29755441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial remediation and plant-microbe interaction under arsenic pollution.
    Raturi G; Chaudhary A; Rana V; Mandlik R; Sharma Y; Barvkar V; Salvi P; Tripathi DK; Kaur J; Deshmukh R; Dhar H
    Sci Total Environ; 2023 Mar; 864():160972. PubMed ID: 36566865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites.
    Burges A; Alkorta I; Epelde L; Garbisu C
    Int J Phytoremediation; 2018 Mar; 20(4):384-397. PubMed ID: 28862473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remediation of arsenic-contaminated paddy soil by intercropping aquatic vegetables and rice.
    Huang SY; Zhuo C; Du XY; Li HS
    Int J Phytoremediation; 2021; 23(10):1021-1029. PubMed ID: 33491468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in the bioremediation of arsenic-contaminated soils: a mini review.
    Laha A; Sengupta S; Bhattacharya P; Mandal J; Bhattacharyya S; Bhattacharyya K
    World J Microbiol Biotechnol; 2022 Aug; 38(11):189. PubMed ID: 35972701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytoremediation of radioactive elements, possibilities and challenges: special focus on agricultural aspects.
    Singh G; Bhadange S; Bhawna F; Shewale P; Dahiya R; Aggarwal A; Manju F; Arya SK
    Int J Phytoremediation; 2023; 25(1):1-8. PubMed ID: 35244498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotechnology Advances in Bioremediation of Arsenic: A Review.
    Preetha JSY; Arun M; Vidya N; Kowsalya K; Halka J; Ondrasek G
    Molecules; 2023 Feb; 28(3):. PubMed ID: 36771138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial biochemical pathways of arsenic biotransformation and their application for bioremediation.
    Mohsin H; Shafique M; Zaid M; Rehman Y
    Folia Microbiol (Praha); 2023 Aug; 68(4):507-535. PubMed ID: 37326815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial consortia-mediated arsenic bioremediation in agricultural soils: Current status, challenges, and solutions.
    Kaya C; Uğurlar F; Ashraf M; Hou D; Kirkham MB; Bolan N
    Sci Total Environ; 2024 Mar; 917():170297. PubMed ID: 38272079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depth-resolved microbial community analyses in two contrasting soil cores contaminated by antimony and arsenic.
    Xiao E; Krumins V; Xiao T; Dong Y; Tang S; Ning Z; Huang Z; Sun W
    Environ Pollut; 2017 Feb; 221():244-255. PubMed ID: 27979681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial metabolism of environmental arsenic--mechanisms and biotechnological applications.
    Kruger MC; Bertin PN; Heipieper HJ; Arsène-Ploetze F
    Appl Microbiol Biotechnol; 2013 May; 97(9):3827-41. PubMed ID: 23546422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vanadium in soil-plant system: Source, fate, toxicity, and bioremediation.
    Chen L; Liu JR; Hu WF; Gao J; Yang JY
    J Hazard Mater; 2021 Mar; 405():124200. PubMed ID: 33092873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic speciation and biotransformation pathways in the aquatic ecosystem: The significance of algae.
    Hussain MM; Wang J; Bibi I; Shahid M; Niazi NK; Iqbal J; Mian IA; Shaheen SM; Bashir S; Shah NS; Hina K; Rinklebe J
    J Hazard Mater; 2021 Feb; 403():124027. PubMed ID: 33265048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Action mechanisms of microorganisms on arsenic and the feasibility of utilizing fungi remediation of arsenic-contaminated soil].
    Su SM; Zeng XB; Bai LY; Li LF
    Ying Yong Sheng Tai Xue Bao; 2010 Dec; 21(12):3266-72. PubMed ID: 21443018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbiology of inorganic arsenic: From metabolism to bioremediation.
    Yamamura S; Amachi S
    J Biosci Bioeng; 2014 Jul; 118(1):1-9. PubMed ID: 24507904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant growth-promoting bacteria in phytoremediation of metal-polluted soils: Current knowledge and future directions.
    Alves ARA; Yin Q; Oliveira RS; Silva EF; Novo LAB
    Sci Total Environ; 2022 Sep; 838(Pt 4):156435. PubMed ID: 35660615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of Endophytic and Rhizosphere Bacteria To Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica.
    Mesa V; Navazas A; González-Gil R; González A; Weyens N; Lauga B; Gallego JLR; Sánchez J; Peláez AI
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28188207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extractive recovery and valorisation of arsenic from contaminated soil through phytoremediation using Pteris cretica.
    Eze VC; Harvey AP
    Chemosphere; 2018 Oct; 208():484-492. PubMed ID: 29886337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.