These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 34859580)

  • 41. Stretchable Conductive Adhesives with Superior Electrical Stability as Printable Interconnects in Washable Textile Electronics.
    Ko Y; Oh J; Park KT; Kim S; Huh W; Sung BJ; Lim JA; Lee SS; Kim H
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):37043-37050. PubMed ID: 31518103
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Flexible Hybrid Integration Enabled xsOn-Skin Electronics for Wireless Monitoring of Electrophysiology and Motion.
    Zhao D; Zhao J; Liu L; Guo W; Zhu K; Yang G; Li Z; Wu H
    IEEE Trans Biomed Eng; 2022 Apr; 69(4):1340-1348. PubMed ID: 34596530
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network.
    Lee P; Lee J; Lee H; Yeo J; Hong S; Nam KH; Lee D; Lee SS; Ko SH
    Adv Mater; 2012 Jul; 24(25):3326-32. PubMed ID: 22610599
    [TBL] [Abstract][Full Text] [Related]  

  • 44. CMOS-Technology-Enabled Flexible and Stretchable Electronics for Internet of Everything Applications.
    Hussain AM; Hussain MM
    Adv Mater; 2016 Jun; 28(22):4219-49. PubMed ID: 26607553
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Full integration of highly stretchable inorganic transistors and circuits within molecular-tailored elastic substrates on a large scale.
    Kang SH; Jo JW; Lee JM; Moon S; Shin SB; Choi SB; Byeon D; Kim J; Kim MG; Kim YH; Kim JW; Park SK
    Nat Commun; 2024 Apr; 15(1):2814. PubMed ID: 38561403
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Highly conductive and ultrastretchable electric circuits from covered yarns and silver nanowires.
    Cheng Y; Wang R; Sun J; Gao L
    ACS Nano; 2015 Apr; 9(4):3887-95. PubMed ID: 25808756
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Freestanding Serpentine Silicon Strips with Ultrahigh Stretchability over 300% for Wearable Electronics.
    Shi Y; Zhao J; Zhang B; Qin J; Hu X; Cheng Y; Yu J; Jie J; Zhang X
    Adv Mater; 2024 Jun; 36(24):e2313603. PubMed ID: 38489559
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Unprecedented Uniform 3D Growth Integration of 10-Layer Stacked Si Nanowires on Tightly Confined Sidewall Grooves.
    Hu R; Xu S; Wang J; Shi Y; Xu J; Chen K; Yu L
    Nano Lett; 2020 Oct; 20(10):7489-7497. PubMed ID: 32970444
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nickel/Platinum Dual Silicide Axial Nanowire Heterostructures with Excellent Photosensor Applications.
    Wu YT; Huang CW; Chiu CH; Chang CF; Chen JY; Lin TY; Huang YT; Lu KC; Yeh PH; Wu WW
    Nano Lett; 2016 Feb; 16(2):1086-91. PubMed ID: 26789624
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Alloying and Embedding of Cu-Core/Ag-Shell Nanowires for Ultrastable Stretchable and Transparent Electrodes.
    Zhang B; Li W; Nogi M; Chen C; Yang Y; Sugahara T; Koga H; Suganuma K
    ACS Appl Mater Interfaces; 2019 May; 11(20):18540-18547. PubMed ID: 31055926
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Intrinsically Stretchable and Conductive Textile by a Scalable Process for Elastic Wearable Electronics.
    Wang C; Zhang M; Xia K; Gong X; Wang H; Yin Z; Guan B; Zhang Y
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13331-13338. PubMed ID: 28345872
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biodegradable Metallic Glass for Stretchable Transient Electronics.
    Bae JY; Gwak EJ; Hwang GS; Hwang HW; Lee DJ; Lee JS; Joo YC; Sun JY; Jun SH; Ok MR; Kim JY; Kang SK
    Adv Sci (Weinh); 2021 May; 8(10):2004029. PubMed ID: 34026449
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanical Gradients Enable Highly Stretchable Electronics Based on Nanofiber Substrates.
    Wang M; Wang K; Ma C; Uzabakiriho PC; Chen X; Zhao G
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):35997-36006. PubMed ID: 35894160
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrical characterization of strained and unstrained silicon nanowires with nickel silicide contacts.
    Habicht S; Zhao QT; Feste SF; Knoll L; Trellenkamp S; Ghyselen B; Mantl S
    Nanotechnology; 2010 Mar; 21(10):105701. PubMed ID: 20154367
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ultra-Confined Catalytic Growth Integration of Sub-10 nm 3D Stacked Silicon Nanowires Via a Self-Delimited Droplet Formation Strategy.
    Hu R; Liang Y; Qian W; Gan X; Liang L; Wang J; Liu Z; Shi Y; Xu J; Chen K; Yu L
    Small; 2022 Oct; 18(42):e2204390. PubMed ID: 36084173
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Buckle-Delamination-Enabled Stretchable Silver Nanowire Conductors.
    Wu S; Yao S; Liu Y; Hu X; Huang HH; Zhu Y
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41696-41703. PubMed ID: 32808757
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fabrication of Ni-silicide/Si heterostructured nanowire arrays by glancing angle deposition and solid state reaction.
    Hsu HF; Huang WR; Chen TH; Wu HY; Chen CA
    Nanoscale Res Lett; 2013 May; 8(1):224. PubMed ID: 23663726
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Skin-Inspired Electronics: An Emerging Paradigm.
    Wang S; Oh JY; Xu J; Tran H; Bao Z
    Acc Chem Res; 2018 May; 51(5):1033-1045. PubMed ID: 29693379
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ultraminiaturized Stretchable Strain Sensors Based on Single Silicon Nanowires for Imperceptible Electronic Skins.
    Huang S; Zhang B; Shao Z; He L; Zhang Q; Jie J; Zhang X
    Nano Lett; 2020 Apr; 20(4):2478-2485. PubMed ID: 32142295
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel.
    Lee J; Lee P; Lee H; Lee D; Lee SS; Ko SH
    Nanoscale; 2012 Oct; 4(20):6408-14. PubMed ID: 22952107
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.