These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 34859592)
1. Matching Charge Extraction Contact for Infrared PbS Colloidal Quantum Dot Solar Cells. Li M; Chen S; Zhao X; Xiong K; Wang B; Shah UA; Gao L; Lan X; Zhang J; Hsu HY; Tang J; Song H Small; 2022 Jan; 18(1):e2105495. PubMed ID: 34859592 [TBL] [Abstract][Full Text] [Related]
2. Effective Charge Collection of Electron Transport Layers for High-Performance Quantum Dot Infrared Solar Cells. Wang M; Liu S; Wei A; Luo T; Wen X; Li MY; Lu H ACS Appl Mater Interfaces; 2024 May; 16(19):24572-24579. PubMed ID: 38690767 [TBL] [Abstract][Full Text] [Related]
3. Solution-Phase Hybrid Passivation for Efficient Infrared-Band Gap Quantum Dot Solar Cells. Mahajan C; Sharma A; Rath AK ACS Appl Mater Interfaces; 2020 Nov; 12(44):49840-49848. PubMed ID: 33081466 [TBL] [Abstract][Full Text] [Related]
4. Suppressing Charge Extraction Loss in Quantum Dot Infrared Photovoltaics by Optimizing the Charge Transport Layer. Liu S; Wang M; Luo T; Wei A; Li MY; Lu H; Wen X J Phys Chem Lett; 2024 Aug; 15(33):8427-8433. PubMed ID: 39116387 [TBL] [Abstract][Full Text] [Related]
5. Efficient and Stable PbS Quantum Dot Solar Cells by Triple-Cation Perovskite Passivation. Albaladejo-Siguan M; Becker-Koch D; Taylor AD; Sun Q; Lami V; Oppenheimer PG; Paulus F; Vaynzof Y ACS Nano; 2020 Jan; 14(1):384-393. PubMed ID: 31721556 [TBL] [Abstract][Full Text] [Related]
6. Merging Passivation in Synthesis Enabling the Lowest Open-Circuit Voltage Loss for PbS Quantum Dot Solar Cells. Liu Y; Wu H; Shi G; Li Y; Gao Y; Fang S; Tang H; Chen W; Ma T; Khan I; Wang K; Wang C; Li X; Shen Q; Liu Z; Ma W Adv Mater; 2023 Feb; 35(5):e2207293. PubMed ID: 36380715 [TBL] [Abstract][Full Text] [Related]
7. Efficiently Passivated PbSe Quantum Dot Solids for Infrared Photovoltaics. Liu S; Xiong K; Wang K; Liang G; Li MY; Tang H; Yang X; Huang Z; Lian L; Tan M; Wang K; Gao L; Song H; Zhang D; Gao J; Lan X; Tang J; Zhang J ACS Nano; 2021 Feb; 15(2):3376-3386. PubMed ID: 33512158 [TBL] [Abstract][Full Text] [Related]
8. Stable PbS colloidal quantum dot inks enable blade-coating infrared solar cells. Zhao X; Li M; Ma T; Yan J; Khalaf GMG; Chen C; Hsu HY; Song H; Tang J Front Optoelectron; 2023 Oct; 16(1):27. PubMed ID: 37882898 [TBL] [Abstract][Full Text] [Related]
9. Investigation of colloidal PbS quantum dot-based solar cells with near infrared emission. Lim S; Kim Y; Lee J; Han CJ; Kang J; Kim J J Nanosci Nanotechnol; 2014 Dec; 14(12):9346-50. PubMed ID: 25971063 [TBL] [Abstract][Full Text] [Related]
10. Quantum Dot-Siloxane Anchoring on Colloidal Quantum Dot Film for Flexible Photovoltaic Cell. Kim C; Kozakci I; Lee SY; Kim B; Kim J; Lee J; Ma BS; Oh ES; Kim TS; Lee JY Small; 2023 Oct; 19(41):e2302195. PubMed ID: 37300352 [TBL] [Abstract][Full Text] [Related]
11. Unraveling the Organic and Inorganic Passivation Mechanism of ZnO Nanowires for Construction of Efficient Bulk Heterojunction Quantum Dot Solar Cells. Wei Y; Nakamura M; Ding C; Liu D; Li H; Li Y; Yang Y; Wang D; Wang R; Hayase S; Masuda T; Shen Q ACS Appl Mater Interfaces; 2022 Aug; 14(31):36268-36276. PubMed ID: 35894431 [TBL] [Abstract][Full Text] [Related]
12. Chloride Passivation of ZnO Electrodes Improves Charge Extraction in Colloidal Quantum Dot Photovoltaics. Choi J; Kim Y; Jo JW; Kim J; Sun B; Walters G; García de Arquer FP; Quintero-Bermudez R; Li Y; Tan CS; Quan LN; Kam APT; Hoogland S; Lu Z; Voznyy O; Sargent EH Adv Mater; 2017 Sep; 29(33):. PubMed ID: 28671721 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and Processing Strategy for High-Bandgap PbS Quantum Dots: A Promising Candidate for Harvesting High-Energy Photons in Solar Cells. Shinde DD; Sharma A; Dambhare NV; Mahajan C; Biswas A; Mitra A; Rath AK ACS Appl Mater Interfaces; 2024 Aug; 16(32):42522-42533. PubMed ID: 39087921 [TBL] [Abstract][Full Text] [Related]
14. Activated Electron-Transport Layers for Infrared Quantum Dot Optoelectronics. Choi J; Jo JW; de Arquer FPG; Zhao YB; Sun B; Kim J; Choi MJ; Baek SW; Proppe AH; Seifitokaldani A; Nam DH; Li P; Ouellette O; Kim Y; Voznyy O; Hoogland S; Kelley SO; Lu ZH; Sargent EH Adv Mater; 2018 May; ():e1801720. PubMed ID: 29808501 [TBL] [Abstract][Full Text] [Related]
15. Mixed Lead Halide Passivation of Quantum Dots. Fan JZ; Andersen NT; Biondi M; Todorović P; Sun B; Ouellette O; Abed J; Sagar LK; Choi MJ; Hoogland S; de Arquer FPG; Sargent EH Adv Mater; 2019 Nov; 31(48):e1904304. PubMed ID: 31600007 [TBL] [Abstract][Full Text] [Related]
16. Reducing the Open-Circuit Voltage Loss of PbS Quantum Dot Solar Cells via Hybrid Ligand Exchange Treatment. Huang T; Wu C; Yang J; Hu P; Qian L; Sun T; Xiang C ACS Appl Mater Interfaces; 2024 Jan; 16(1):915-923. PubMed ID: 38145458 [TBL] [Abstract][Full Text] [Related]
17. Efficient PbS Quantum Dot Solar Cells with Both Mg-Doped ZnO Window Layer and ZnO Nanocrystal Interface Passivation Layer. Ren H; Xu A; Pan Y; Qin D; Hou L; Wang D Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33467785 [TBL] [Abstract][Full Text] [Related]
18. Scalable PbS Quantum Dot Solar Cell Production by Blade Coating from Stable Inks. Sukharevska N; Bederak D; Goossens VM; Momand J; Duim H; Dirin DN; Kovalenko MV; Kooi BJ; Loi MA ACS Appl Mater Interfaces; 2021 Feb; 13(4):5195-5207. PubMed ID: 33470785 [TBL] [Abstract][Full Text] [Related]
19. Colloidal PbS quantum dot solar cells with high fill factor. Zhao N; Osedach TP; Chang LY; Geyer SM; Wanger D; Binda MT; Arango AC; Bawendi MG; Bulovic V ACS Nano; 2010 Jul; 4(7):3743-52. PubMed ID: 20590129 [TBL] [Abstract][Full Text] [Related]
20. Improving the photovoltaic performance for PbS QD thin film solar cells through interface engineering. Yang Y; Rao Z; Xu Q; Liang Y; Yang L J Colloid Interface Sci; 2022 Dec; 627():562-568. PubMed ID: 35870408 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]