These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 34860033)
21. The impact of viscoplastic drops on a heated surface in the Leidenfrost regime. Chen S; Bertola V Soft Matter; 2016 Sep; 12(36):7624-31. PubMed ID: 27505061 [TBL] [Abstract][Full Text] [Related]
22. Effect of Different Fluids on Rectified Motion of Leidenfrost Droplets on Micro/Sub-Micron Ratchets. Ok JT; Choi J; Brown E; Park S Microelectron Eng; 2016 Jun; 158():130-134. PubMed ID: 27721527 [TBL] [Abstract][Full Text] [Related]
24. From Bouncing to Floating: The Leidenfrost Effect with Hydrogel Spheres. Waitukaitis S; Harth K; van Hecke M Phys Rev Lett; 2018 Jul; 121(4):048001. PubMed ID: 30095937 [TBL] [Abstract][Full Text] [Related]
25. Drop impact on hot plates: contact times, lift-off and the lamella rupture. Lee SH; Harth K; Rump M; Kim M; Lohse D; Fezzaa K; Je JH Soft Matter; 2020 Sep; 16(34):7935-7949. PubMed ID: 32761034 [TBL] [Abstract][Full Text] [Related]
26. Self-propulsion of Leidenfrost Drops between Non-Parallel Structures. Luo C; Mrinal M; Wang X Sci Rep; 2017 Sep; 7(1):12018. PubMed ID: 28931942 [TBL] [Abstract][Full Text] [Related]
27. Electric field makes Leidenfrost droplets take a leap. Wildeman S; Sun C Soft Matter; 2016 Dec; 12(48):9622-9632. PubMed ID: 27858052 [TBL] [Abstract][Full Text] [Related]
28. Organization of microbeads in Leidenfrost drops. Maquet L; Colinet P; Dorbolo S Soft Matter; 2014 Jun; 10(23):4061-6. PubMed ID: 24705688 [TBL] [Abstract][Full Text] [Related]
29. Delayed Leidenfrost Effect of a Cutting Droplet on a Microgrooved Tool Surface. Guo Y; Liu X; Ji J; Wang Z; Hu X; Zhu Y; Zhang T; Tao T; Liu K; Jiao Y Langmuir; 2023 Jul; 39(28):9648-9659. PubMed ID: 37390023 [TBL] [Abstract][Full Text] [Related]
30. Inhibiting the Leidenfrost effect above 1,000 °C for sustained thermal cooling. Jiang M; Wang Y; Liu F; Du H; Li Y; Zhang H; To S; Wang S; Pan C; Yu J; Quéré D; Wang Z Nature; 2022 Jan; 601(7894):568-572. PubMed ID: 35082423 [TBL] [Abstract][Full Text] [Related]
31. Heat transfer enhancement accompanying Leidenfrost state suppression at ultrahigh temperatures. Shahriari A; Wurz J; Bahadur V Langmuir; 2014 Oct; 30(40):12074-81. PubMed ID: 25225852 [TBL] [Abstract][Full Text] [Related]
32. Jumps, somersaults, and symmetry breaking in Leidenfrost drops. Chen S; Bertola V Phys Rev E; 2016 Aug; 94(2-1):021102. PubMed ID: 27627234 [TBL] [Abstract][Full Text] [Related]
33. Leidenfrost point reduction on micropatterned metallic surfaces. del Cerro DA; Marín AG; Römer GR; Pathiraj B; Lohse D; Huis in 't Veld AJ Langmuir; 2012 Oct; 28(42):15106-10. PubMed ID: 23020737 [TBL] [Abstract][Full Text] [Related]
34. Inverse leidenfrost drop manipulation using menisci. Gauthier A; Lajoinie G; Snoeijer JH; van der Meer D Soft Matter; 2020 Apr; 16(16):4043-4048. PubMed ID: 32270805 [TBL] [Abstract][Full Text] [Related]
35. Elongated Bouncing and Reduced Contact Time of a Drop in the Janus State. Sahoo V; Chou CY; Lo CW; Lu MC Langmuir; 2018 Sep; 34(37):10874-10879. PubMed ID: 30132668 [TBL] [Abstract][Full Text] [Related]
36. Suppression of the Leidenfrost effect via low frequency vibrations. Ng BT; Hung YM; Tan MK Soft Matter; 2015 Jan; 11(4):775-84. PubMed ID: 25493924 [TBL] [Abstract][Full Text] [Related]
37. A Review on the Coalescence of Confined Drops with a Focus on Scaling Laws for the Growth of the Liquid Bridge. Ryu S; Zhang H; Anuta UJ Micromachines (Basel); 2023 Oct; 14(11):. PubMed ID: 38004903 [TBL] [Abstract][Full Text] [Related]