These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 34860046)

  • 1. Search and Localization Dynamics of the CRISPR-Cas9 System.
    Lu Q; Bhat D; Stepanenko D; Pigolotti S
    Phys Rev Lett; 2021 Nov; 127(20):208102. PubMed ID: 34860046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome editing: A perspective on the application of CRISPR/Cas9 to study human diseases (Review).
    Rodríguez-Rodríguez DR; Ramírez-Solís R; Garza-Elizondo MA; Garza-Rodríguez ML; Barrera-Saldaña HA
    Int J Mol Med; 2019 Apr; 43(4):1559-1574. PubMed ID: 30816503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas gene therapy.
    Zhang B
    J Cell Physiol; 2021 Apr; 236(4):2459-2481. PubMed ID: 32959897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9 in plants: at play in the genome and at work for crop improvement.
    Hussain B; Lucas SJ; Budak H
    Brief Funct Genomics; 2018 Sep; 17(5):319-328. PubMed ID: 29912293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manipulating plant RNA-silencing pathways to improve the gene editing efficiency of CRISPR/Cas9 systems.
    Mao Y; Yang X; Zhou Y; Zhang Z; Botella JR; Zhu JK
    Genome Biol; 2018 Sep; 19(1):149. PubMed ID: 30266091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carboxylated nanodiamond-mediated CRISPR-Cas9 delivery of human retinoschisis mutation into human iPSCs and mouse retina.
    Yang TC; Chang CY; Yarmishyn AA; Mao YS; Yang YP; Wang ML; Hsu CC; Yang HY; Hwang DK; Chen SJ; Tsai ML; Lai YH; Tzeng Y; Chang CC; Chiou SH
    Acta Biomater; 2020 Jan; 101():484-494. PubMed ID: 31672582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Marker-free genome editing in Ustilago trichophora with the CRISPR-Cas9 technology.
    Huck S; Bock J; Girardello J; Gauert M; Pul Ü
    RNA Biol; 2019 Apr; 16(4):397-403. PubMed ID: 29996713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time observation of flexible domain movements in CRISPR-Cas9.
    Osuka S; Isomura K; Kajimoto S; Komori T; Nishimasu H; Shima T; Nureki O; Uemura S
    EMBO J; 2018 May; 37(10):. PubMed ID: 29650679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A CRISPR-Cas9-integrase complex generates precise DNA fragments for genome integration.
    Jakhanwal S; Cress BF; Maguin P; Lobba MJ; Marraffini LA; Doudna JA
    Nucleic Acids Res; 2021 Apr; 49(6):3546-3556. PubMed ID: 33693715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deciphering and simulating models of radiation genotoxicity with CRISPR/Cas9 systems.
    Vukmirovic D; Seymour C; Mothersill C
    Mutat Res Rev Mutat Res; 2020; 783():108298. PubMed ID: 32386748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-molecule FRET studies of Cas9 endonuclease.
    Globyte V; Joo C
    Methods Enzymol; 2019; 616():313-335. PubMed ID: 30691649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling Cas9 to artificial inhibitory domains enhances CRISPR-Cas9 target specificity.
    Aschenbrenner S; Kallenberger SM; Hoffmann MD; Huck A; Eils R; Niopek D
    Sci Adv; 2020 Feb; 6(6):eaay0187. PubMed ID: 32076642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-Cas9-mediated pinpoint microbial genome editing aided by target-mismatched sgRNAs.
    Lee HJ; Kim HJ; Lee SJ
    Genome Res; 2020 May; 30(5):768-775. PubMed ID: 32327447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SpRY Cas9 Can Utilize a Variety of Protospacer Adjacent Motif Site Sequences To Edit the Candida albicans Genome.
    Evans BA; Bernstein DA
    mSphere; 2021 May; 6(3):. PubMed ID: 34011687
    [No Abstract]   [Full Text] [Related]  

  • 16. Fabrication and characterization of PLGA nanoparticles encapsulating large CRISPR-Cas9 plasmid.
    Jo A; Ringel-Scaia VM; McDaniel DK; Thomas CA; Zhang R; Riffle JS; Allen IC; Davis RM
    J Nanobiotechnology; 2020 Jan; 18(1):16. PubMed ID: 31959180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sharpening the Scissors: Mechanistic Details of CRISPR/Cas9 Improve Functional Understanding and Inspire Future Research.
    Raper AT; Stephenson AA; Suo Z
    J Am Chem Soc; 2018 Sep; 140(36):11142-11152. PubMed ID: 30160947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology.
    Khan MHU; Khan SU; Muhammad A; Hu L; Yang Y; Fan C
    J Cell Physiol; 2018 Jun; 233(6):4578-4594. PubMed ID: 29194606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-CRISPR Protein AcrIIC5 Inhibits CRISPR-Cas9 by Occupying the Target DNA Binding Pocket.
    Hwang S; Shah M; Garcia B; Hashem N; Davidson AR; Moraes TF; Maxwell KL
    J Mol Biol; 2023 Apr; 435(7):167991. PubMed ID: 36736884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/CRISPR-Associated Endonuclease Cas9-Mediated Homology-Independent Integration for Generating Quality Control Materials for Clinical Molecular Genetic Testing.
    Lin G; Zhang K; Peng R; Han Y; Xie J; Li J
    J Mol Diagn; 2018 May; 20(3):373-380. PubMed ID: 29680088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.