These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34860071)

  • 1. Periodically Driven Quantum Thermal Machines from Warming up to Limit Cycle.
    Liu J; Jung KA; Segal D
    Phys Rev Lett; 2021 Nov; 127(20):200602. PubMed ID: 34860071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum Carnot thermal machines reexamined: Definition of efficiency and the effects of strong coupling.
    Liu J; Jung KA
    Phys Rev E; 2024 Apr; 109(4-1):044118. PubMed ID: 38755899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Characterization of a Spin Quantum Heat Engine.
    Peterson JPS; Batalhão TB; Herrera M; Souza AM; Sarthour RS; Oliveira IS; Serra RM
    Phys Rev Lett; 2019 Dec; 123(24):240601. PubMed ID: 31922824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum Heat Engines with Complex Working Media, Complete Otto Cycles and Heuristics.
    Johal RS; Mehta V
    Entropy (Basel); 2021 Sep; 23(9):. PubMed ID: 34573774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropy-assisted thermodynamic advantage of a local-spin quantum thermal machine.
    Purkait C; Chand S; Biswas A
    Phys Rev E; 2024 Apr; 109(4-1):044128. PubMed ID: 38755864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of a strongly coupled quantum heat engine-Computing bath observables from the hierarchy of pure states.
    Boettcher V; Hartmann R; Beyer K; Strunz WT
    J Chem Phys; 2024 Mar; 160(9):. PubMed ID: 38436445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quantum heat engine driven by atomic collisions.
    Bouton Q; Nettersheim J; Burgardt S; Adam D; Lutz E; Widera A
    Nat Commun; 2021 Apr; 12(1):2063. PubMed ID: 33824327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. General formalism of local thermodynamics with an example: Quantum Otto engine with a spin-1/2 coupled to an arbitrary spin.
    Altintas F; Müstecaplıoğlu ÖE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022142. PubMed ID: 26382378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strongly coupled quantum Otto cycle with single qubit bath.
    Chakraborty S; Das A; Chruściński D
    Phys Rev E; 2022 Dec; 106(6-1):064133. PubMed ID: 36671160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid quantum thermal machines with dynamical couplings.
    Cavaliere F; Razzoli L; Carrega M; Benenti G; Sassetti M
    iScience; 2023 Mar; 26(3):106235. PubMed ID: 36922994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement-based quantum Otto engine with a two-spin system coupled by anisotropic interaction: Enhanced efficiency at finite times.
    Purkait C; Biswas A
    Phys Rev E; 2023 May; 107(5-1):054110. PubMed ID: 37329072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multilayer Graphene as an Endoreversible Otto Engine.
    Myers NM; Peña FJ; Cortés N; Vargas P
    Nanomaterials (Basel); 2023 May; 13(9):. PubMed ID: 37177093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum thermodynamic cycle with quantum phase transition.
    Ma YH; Su SH; Sun CP
    Phys Rev E; 2017 Aug; 96(2-1):022143. PubMed ID: 28950560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of a quantum heat engine at strong reservoir coupling.
    Newman D; Mintert F; Nazir A
    Phys Rev E; 2017 Mar; 95(3-1):032139. PubMed ID: 28415330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamical analysis of a quantum heat engine based on harmonic oscillators.
    Insinga A; Andresen B; Salamon P
    Phys Rev E; 2016 Jul; 94(1-1):012119. PubMed ID: 27575089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines.
    Kato A; Tanimura Y
    J Chem Phys; 2016 Dec; 145(22):224105. PubMed ID: 27984915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model-free optimization of power/efficiency tradeoffs in quantum thermal machines using reinforcement learning.
    Erdman PA; Noé F
    PNAS Nexus; 2023 Aug; 2(8):pgad248. PubMed ID: 37593201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Power and efficiency of a thermal engine with a coherent bath.
    Guff T; Daryanoosh S; Baragiola BQ; Gilchrist A
    Phys Rev E; 2019 Sep; 100(3-1):032129. PubMed ID: 31639983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat-machine control by quantum-state preparation: from quantum engines to refrigerators.
    Gelbwaser-Klimovsky D; Kurizki G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022102. PubMed ID: 25215684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The thermodynamic cost of driving quantum systems by their boundaries.
    Barra F
    Sci Rep; 2015 Oct; 5():14873. PubMed ID: 26445899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.