These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34860213)

  • 41. Nanoparticle-mediated photothermal therapy: a comparative study of heating for different particle types.
    Pattani VP; Tunnell JW
    Lasers Surg Med; 2012 Oct; 44(8):675-84. PubMed ID: 22933382
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enlarge the biologic coating-induced absorbance enhancement of Au-Ag bimetallic nanoshells by tuning the metal composition.
    Zhu J; Li X; Li JJ; Zhao JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 189():571-577. PubMed ID: 28881282
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Scalable routes to gold nanoshells with tunable sizes and response to near-infrared pulsed-laser irradiation.
    Prevo BG; Esakoff SA; Mikhailovsky A; Zasadzinski JA
    Small; 2008 Aug; 4(8):1183-95. PubMed ID: 18623295
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reconfigurable core-satellite nanoassemblies as molecularly-driven plasmonic switches.
    Sebba DS; Mock JJ; Smith DR; Labean TH; Lazarides AA
    Nano Lett; 2008 Jul; 8(7):1803-8. PubMed ID: 18540653
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes.
    Sun Y; Xia Y
    Anal Chem; 2002 Oct; 74(20):5297-305. PubMed ID: 12403584
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hollow Mesoporous Plasmonic Nanoshells for Enhanced Solar Vapor Generation.
    Zielinski MS; Choi JW; La Grange T; Modestino M; Hashemi SM; Pu Y; Birkhold S; Hubbell JA; Psaltis D
    Nano Lett; 2016 Apr; 16(4):2159-67. PubMed ID: 26918518
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Folding Up of Gold Nanoparticle Strings into Plasmonic Vesicles for Enhanced Photoacoustic Imaging.
    Liu Y; He J; Yang K; Yi C; Liu Y; Nie L; Khashab NM; Chen X; Nie Z
    Angew Chem Int Ed Engl; 2015 Dec; 54(52):15809-12. PubMed ID: 26555318
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Symmetry breaking in gold-silica-gold multilayer nanoshells.
    Hu Y; Noelck SJ; Drezek RA
    ACS Nano; 2010 Mar; 4(3):1521-8. PubMed ID: 20146507
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chiral Assembly of Gold-Silver Core-Shell Plasmonic Nanorods on DNA Origami with Strong Optical Activity.
    Nguyen L; Dass M; Ober MF; Besteiro LV; Wang ZM; Nickel B; Govorov AO; Liedl T; Heuer-Jungemann A
    ACS Nano; 2020 Jun; 14(6):7454-7461. PubMed ID: 32459462
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multifunctional superparamagnetic nanoshells: combining two-photon luminescence imaging, surface-enhanced Raman scattering and magnetic separation.
    Jin X; Li H; Wang S; Kong N; Xu H; Fu Q; Gu H; Ye J
    Nanoscale; 2014 Nov; 6(23):14360-70. PubMed ID: 25329447
    [TBL] [Abstract][Full Text] [Related]  

  • 51. DNA-Enabled Chiral Gold Nanoparticle-Chromophore Hybrid Structure with Resonant Plasmon-Exciton Coupling Gives Unusual and Strong Circular Dichroism.
    Lan X; Zhou X; McCarthy LA; Govorov AO; Liu Y; Link S
    J Am Chem Soc; 2019 Dec; 141(49):19336-19341. PubMed ID: 31724853
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Asymmetric Core-Shell Gold Nanoparticles and Controllable Assemblies for SERS Ratiometric Detection of MicroRNA.
    Zhu R; Feng H; Li Q; Su L; Fu Q; Li J; Song J; Yang H
    Angew Chem Int Ed Engl; 2021 May; 60(22):12560-12568. PubMed ID: 33769682
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metallic nanoshells with semiconductor cores: optical characteristics modified by core medium properties.
    Bardhan R; Grady NK; Ali T; Halas NJ
    ACS Nano; 2010 Oct; 4(10):6169-79. PubMed ID: 20860401
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Highly Sensitive Plasmonic Optical Sensors Based on Gold Core-Satellite Nanostructures Immobilized on Glass Substrates.
    Ode K; Honjo M; Takashima Y; Tsuruoka T; Akamatsu K
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20522-6. PubMed ID: 27482968
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Building plasmonic nanostructures with DNA.
    Tan SJ; Campolongo MJ; Luo D; Cheng W
    Nat Nanotechnol; 2011 May; 6(5):268-76. PubMed ID: 21499251
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Polydopamine-based concentric nanoshells with programmable architectures and plasmonic properties.
    Choi CKK; Zhuo X; Chiu YTE; Yang H; Wang J; Choi CHJ
    Nanoscale; 2017 Nov; 9(43):16968-16980. PubMed ID: 29077104
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Gold core-satellite nanostructure linked by oligonucleotides for detection of glutathione with LSPR scattering spectrum.
    Liu YB; Zhai TT; Liang YY; Wang YB; Xia XH
    Talanta; 2019 Feb; 193():123-127. PubMed ID: 30368280
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Light-Directed Reversible Assembly of Plasmonic Nanoparticles Using Plasmon-Enhanced Thermophoresis.
    Lin L; Peng X; Wang M; Scarabelli L; Mao Z; Liz-Marzán LM; Becker MF; Zheng Y
    ACS Nano; 2016 Oct; 10(10):9659-9668. PubMed ID: 27640212
    [TBL] [Abstract][Full Text] [Related]  

  • 59. One-dimensional coupling of gold nanoparticle plasmons in self-assembled ring superstructures.
    Chang WS; Slaughter LS; Khanal BP; Manna P; Zubarev ER; Link S
    Nano Lett; 2009 Mar; 9(3):1152-7. PubMed ID: 19193117
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reversible Shrinkage of DNA-Functionalized Gold Nanoparticle Assemblies Revealed by Surface Plasmon Resonance.
    Wang G; Yu L; Akiyama Y; Takarada T; Maeda M
    Biotechnol J; 2018 Dec; 13(12):e1800090. PubMed ID: 30052321
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.