BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 3486027)

  • 21. Electrical spinal cord stimulation in the long-term treatment of chronic painful diabetic neuropathy.
    Daousi C; Benbow SJ; MacFarlane IA
    Diabet Med; 2005 Apr; 22(4):393-8. PubMed ID: 15787662
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long term results of periventricular gray self-stimulation.
    Richardson DE; Akil H
    Neurosurgery; 1977; 1(2):199-202. PubMed ID: 308192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New method of deep brain stimulation therapy with two electrodes implanted in parallel and side by side.
    Yamamoto T; Katayama Y; Fukaya C; Oshima H; Kasai M; Kobayashi K
    J Neurosurg; 2001 Dec; 95(6):1075-8. PubMed ID: 11765826
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic influences on brain stimulation-produced analgesia in mice. I. Correlation with stress-induced analgesia.
    Marek P; Yirmiya R; Panocka I; Liebeskind JC
    Brain Res; 1989 Jun; 489(1):182-4. PubMed ID: 2743148
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stimulation-produced analgesia in the mouse: evidence for laterality of opioid mediation.
    Marek P; Yirmiya R; Liebeskind JC
    Brain Res; 1991 Feb; 541(1):154-6. PubMed ID: 2029617
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antagonism of stimulation-produced analgesia by naloxone and N-methyl-D-aspartate: role of opioid and N-methyl-D-aspartate receptors.
    Mehta AK; Halder S; Khanna N; Tandon OP; Sharma KK
    Hum Exp Toxicol; 2012 Jan; 31(1):51-6. PubMed ID: 21803783
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The periaqueductal grey area and control of blood pressure in neurodegeneration.
    Sitsapesan H; Green AL; Aziz TZ; Pereira EA
    Clin Auton Res; 2013 Aug; 23(4):215-9. PubMed ID: 23812562
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Release of beta-endorphin and methionine-enkephalin into cerebrospinal fluid during deep brain stimulation for chronic pain. Effects of stimulation locus and site of sampling.
    Young RF; Bach FW; Van Norman AS; Yaksh TL
    J Neurosurg; 1993 Dec; 79(6):816-25. PubMed ID: 8246048
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glutamatergic cells in the periaqueductal gray matter mediate sensory inputs after bladder stimulation in freely moving rats.
    Zare A; Jahanshahi A; Meriaux C; Steinbusch HW; van Koeveringe GA
    Int J Urol; 2018 Jun; 25(6):621-626. PubMed ID: 29577439
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The saccade-related local field potentials of the superior colliculus: a functional marker for localizing the periventricular and periaqueductal gray.
    Liu X; Nachev P; Wang S; Green A; Kennard C; Aziz T
    J Clin Neurophysiol; 2009 Aug; 26(4):280-7. PubMed ID: 19590433
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Target site of inhibition mediated by midbrain periaqueductal gray matter of baroreflex vagal bradycardia.
    Inui K; Nosaka S
    J Neurophysiol; 1993 Dec; 70(6):2205-14. PubMed ID: 7907131
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Percutaneous central gray stimulation for cancer pain.
    Meyerson BA; Boëthius J; Carlsson AM
    Appl Neurophysiol; 1978; 41(1-4):57-65. PubMed ID: 310285
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling the Impact of Electrode/Tissue Geometry on Electrical Stimulation in Stereo-EEG.
    Shindhelm AC; Thio BJ; Sinha SR
    J Clin Neurophysiol; 2023 May; 40(4):339-349. PubMed ID: 34482315
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An electrophysiological characterization of the projection from the central nucleus of the amygdala to the periaqueductal gray of the rat: the role of opioid receptors.
    da Costa Gomez TM; Behbehani MM
    Brain Res; 1995 Aug; 689(1):21-31. PubMed ID: 8528703
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of acute and chronic fluoxetine and diazepam on freezing behavior induced by electrical stimulation of dorsolateral and lateral columns of the periaqueductal gray matter.
    Borelli KG; Nobre MJ; Brandão ML; Coimbra NC
    Pharmacol Biochem Behav; 2004 Mar; 77(3):557-66. PubMed ID: 15006467
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studies of PAG/PVG stimulation for pain relief in humans.
    Barbaro NM
    Prog Brain Res; 1988; 77():165-73. PubMed ID: 2464178
    [No Abstract]   [Full Text] [Related]  

  • 37. Increased c-Fos expression in select lateral parabrachial subnuclei following chemical versus electrical stimulation of the dorsal periaqueductal gray in rats.
    Hayward LF; Castellanos M
    Brain Res; 2003 Jun; 974(1-2):153-66. PubMed ID: 12742633
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Complications in spinal cord stimulation for treatment of angina pectoris. Differences in unipolar and multipolar percutaneous inserted electrodes.
    Andersen C
    Acta Cardiol; 1997; 52(4):325-33. PubMed ID: 9381889
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thalamic field potentials during deep brain stimulation of periventricular gray in chronic pain.
    Nandi D; Liu X; Joint C; Stein J; Aziz T
    Pain; 2002 May; 97(1-2):47-51. PubMed ID: 12031778
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relative contributions of the nucleus raphe magnus and adjacent medullary reticular formation to the inhibition by stimulation in the periaqueductal gray of a spinal nociceptive reflex in the pentobarbital-anesthetized rat.
    Sandkühler J; Gebhart GF
    Brain Res; 1984 Jul; 305(1):77-87. PubMed ID: 6744063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.