These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34860292)

  • 1. The damping properties of the foam-filled shaft of primary feathers of the pigeon Columba livia.
    Deng K; Kovalev A; Rajabi H; Schaber CF; Dai ZD; Gorb SN
    Naturwissenschaften; 2021 Dec; 109(1):1. PubMed ID: 34860292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological properties of the last primaries, the tail feathers, and the alulae of Accipiter nisus, Columba livia, Falco peregrinus, and Falco tinnunculus.
    Schmitz A; Ponitz B; Brücker C; Schmitz H; Herweg J; Bleckmann H
    J Morphol; 2015 Jan; 276(1):33-46. PubMed ID: 25130288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flight feather attachment in rock pigeons (Columba livia): covert feathers and smooth muscle coordinate a morphing wing.
    Hieronymus TL
    J Anat; 2016 Nov; 229(5):631-656. PubMed ID: 27320170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructure and compression resistance of bean goose (Anser fabalis) feather shaft.
    Zou M; Xu L; Zhou J; Song J; Liu S; Li X
    Microsc Res Tech; 2020 Feb; 83(2):156-164. PubMed ID: 31659818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging techniques for observing laminar geometry in the feather shaft cortex.
    Laurent C; Ahmed S; Boardman R; Cook R; Dyke G; Palmer C; Schneider P; DE Kat R
    J Microsc; 2020 Mar; 277(3):154-159. PubMed ID: 31175672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexural stiffness of feather shafts: geometry rules over material properties.
    Bachmann T; Emmerlich J; Baumgartner W; Schneider JM; Wagner H
    J Exp Biol; 2012 Feb; 215(Pt 3):405-15. PubMed ID: 22246249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An engineering perspective on the microstructure and compression properties of the seagull Larus argentatus feather rachis.
    Zou M; Zhou J; Xu L; Song J; Liu S; Li X
    Micron; 2019 Nov; 126():102735. PubMed ID: 31450186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passive aeroelastic deflection of avian primary feathers.
    Klaassen van Oorschot B; Choroszucha R; Tobalske BW
    Bioinspir Biomim; 2020 Jul; 15(5):056008. PubMed ID: 32470956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specialized primary feathers produce tonal sounds during flight in rock pigeons (Columba livia).
    Niese RL; Tobalske BW
    J Exp Biol; 2016 Jul; 219(Pt 14):2173-81. PubMed ID: 27207645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopy on the wing: Investigating possible differences in protein secondary structures in feather shafts of birds using Raman spectroscopy.
    Laurent CM; Dyke JM; Cook RB; Dyke G; de Kat R
    J Struct Biol; 2020 Jul; 211(1):107529. PubMed ID: 32416130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microscopy imaging and modeling study on the mechanical properties of the primary flight feather shaft of the bean goose, Anser fabalis.
    Liu C; Xu L; Li X; Liu Y; Qi Y; Sun J; Zou M
    Microsc Res Tech; 2022 Jul; 85(7):2446-2454. PubMed ID: 35274785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Failure of flight feathers under uniaxial compression.
    Schelestow K; Troncoso OP; Torres FG
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():923-931. PubMed ID: 28576068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seagull feather shaft: Correlation between structure and mechanical response.
    Wang B; Meyers MA
    Acta Biomater; 2017 Jan; 48():270-288. PubMed ID: 27818305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and mechanical properties of naturally occurring lightweight foam-filled cylinder--the peacock's tail coverts shaft and its components.
    Liu ZQ; Jiao D; Meyers MA; Zhang ZF
    Acta Biomater; 2015 Apr; 17():137-51. PubMed ID: 25662166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A lightweight, biological structure with tailored stiffness: The feather vane.
    Sullivan TN; Pissarenko A; Herrera SA; Kisailus D; Lubarda VA; Meyers MA
    Acta Biomater; 2016 Sep; 41():27-39. PubMed ID: 27184403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional morphology of the vanes of the flight feathers of the pigeon Columba livia.
    Ennos A; Hickson J; Roberts A
    J Exp Biol; 1995; 198(Pt 5):1219-28. PubMed ID: 9319072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphometric characterisation of wing feathers of the barn owl Tyto alba pratincola and the pigeon Columba livia.
    Bachmann T; Klän S; Baumgartner W; Klaas M; Schröder W; Wagner H
    Front Zool; 2007 Nov; 4():23. PubMed ID: 18031576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Morphogenesis and histogenesis of genetically based twin feathers in domestic pigeons (columba livia dom. L.)].
    Hoffmann HJ
    Wilhelm Roux Arch Entwickl Mech Org; 1969 Jun; 163(2):122-160. PubMed ID: 28304438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro- and macroanatomical features of the uropygial gland of duck (
    Hassanin A; Shoeib M; Massoud D
    Biotech Histochem; 2021 Apr; 96(3):213-222. PubMed ID: 32603233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size scaling and stiffness of avian primary feathers: implications for the flight of Mesozoic birds.
    Wang X; Nudds RL; Palmer C; Dyke GJ
    J Evol Biol; 2012 Mar; 25(3):547-55. PubMed ID: 22260434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.