BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 34860427)

  • 1. Indications for rapid evolution of trait means and thermal plasticity in range-expanding populations of a butterfly.
    Neu A; Fischer K
    J Evol Biol; 2022 Jan; 35(1):124-133. PubMed ID: 34860427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of cold tolerance and thermal plasticity in life history, behaviour and physiology during a poleward range expansion.
    Carbonell JA; Wang YJ; Stoks R
    J Anim Ecol; 2021 Jul; 90(7):1666-1677. PubMed ID: 33724470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genotype-environment interactions rule the response of a widespread butterfly to temperature variation.
    Günter F; Beaulieu M; Freiberg KF; Welzel I; Toshkova N; Žagar A; Simčič T; Fischer K
    J Evol Biol; 2020 Jul; 33(7):920-929. PubMed ID: 32243031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maladaptive plasticity facilitates evolution of thermal tolerance during an experimental range shift.
    Leonard AM; Lancaster LT
    BMC Evol Biol; 2020 Apr; 20(1):47. PubMed ID: 32326878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of plasticity and adaptive responses to climate change along climate gradients.
    Kingsolver JG; Buckley LB
    Proc Biol Sci; 2017 Aug; 284(1860):. PubMed ID: 28814652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal plasticity in Drosophila melanogaster populations from eastern Australia: quantitative traits to transcripts.
    Clemson AS; Sgrò CM; Telonis-Scott M
    J Evol Biol; 2016 Dec; 29(12):2447-2463. PubMed ID: 27542565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenological synchrony between a butterfly and its host plants: Experimental test of effects of spring temperature.
    Posledovich D; Toftegaard T; Wiklund C; Ehrlén J; Gotthard K
    J Anim Ecol; 2018 Jan; 87(1):150-161. PubMed ID: 29048758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-gradient variation in growth rate and development time of a broadly distributed butterfly.
    Barton M; Sunnucks P; Norgate M; Murray N; Kearney M
    PLoS One; 2014; 9(4):e95258. PubMed ID: 24743771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenotypic biomarkers of climatic impacts on declining insect populations: A key role for decadal drought, thermal buffering and amplification effects and host plant dynamics.
    Carnicer J; Stefanescu C; Vives-Ingla M; López C; Cortizas S; Wheat C; Vila R; Llusià J; Peñuelas J
    J Anim Ecol; 2019 Mar; 88(3):376-391. PubMed ID: 30480313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Limited plasticity in thermally tolerant ectotherm populations: evidence for a trade-off.
    Barley JM; Cheng BS; Sasaki M; Gignoux-Wolfsohn S; Hays CG; Putnam AB; Sheth S; Villeneuve AR; Kelly M
    Proc Biol Sci; 2021 Sep; 288(1958):20210765. PubMed ID: 34493077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal evolution of life history and heat tolerance during range expansions toward warmer and cooler regions.
    Carbonell JA; Stoks R
    Ecology; 2020 Oct; 101(10):e03134. PubMed ID: 32691873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Keeping your options open: Maintenance of thermal plasticity during adaptation to a stable environment.
    Fragata I; Lopes-Cunha M; Bárbaro M; Kellen B; Lima M; Faria GS; Seabra SG; Santos M; Simões P; Matos M
    Evolution; 2016 Jan; 70(1):195-206. PubMed ID: 26626438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinal adaptation and adaptive plasticity in Artemisia californica: implications for the response of a foundation species to predicted climate change.
    Pratt JD; Mooney KA
    Glob Chang Biol; 2013 Aug; 19(8):2454-66. PubMed ID: 23505064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential for adaptation to climate change: family-level variation in fitness-related traits and their responses to heat waves in a snail population.
    Leicht K; Seppälä K; Seppälä O
    BMC Evol Biol; 2017 Jun; 17(1):140. PubMed ID: 28619023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of adult temperature on gene expression in a butterfly: identifying pathways associated with thermal acclimation.
    Franke K; Karl I; Centeno TP; Feldmeyer B; Lassek C; Oostra V; Riedel K; Stanke M; Wheat CW; Fischer K
    BMC Evol Biol; 2019 Jan; 19(1):32. PubMed ID: 30674272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local adaptation in thermal tolerance for a tropical butterfly across ecotone and rainforest habitats.
    Dongmo MAK; Hanna R; Smith TB; Fiaboe KKM; Fomena A; Bonebrake TC
    Biol Open; 2021 Apr; 10(4):. PubMed ID: 34416009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation in developmental temperature alters adulthood plasticity of thermal tolerance in
    Healy TM; Bock AK; Burton RS
    J Exp Biol; 2019 Nov; 222(Pt 22):. PubMed ID: 31597734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence of plasticity, but not evolutionary divergence, in the thermal limits of a highly successful urban butterfly.
    Lenard A; Diamond SE
    J Insect Physiol; 2024 Jun; 155():104648. PubMed ID: 38754698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenotypic plasticity in thermal tolerance in the Glanville fritillary butterfly.
    Luo S; Chong Wong S; Xu C; Hanski I; Wang R; Lehtonen R
    J Therm Biol; 2014 May; 42():33-9. PubMed ID: 24802146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variation in adult stress resistance does not explain vulnerability to climate change in copper butterflies.
    Klockmann M; Wallmeyer L; Fischer K
    Insect Sci; 2018 Oct; 25(5):894-904. PubMed ID: 28294575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.