These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34860500)

  • 1. Salt Gradient Control of Translocation Dynamics in a Solid-State Nanopore.
    Leong IW; Tsutsui M; Yokota K; Taniguchi M
    Anal Chem; 2021 Dec; 93(49):16700-16708. PubMed ID: 34860500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of entrance effects on particle electrophoretic behavior near a nanopore for resistive pulse sensing.
    Hsu C; Lin CY; Alizadeh A; Daiguji H; Hsu WL
    Electrophoresis; 2021 Nov; 42(21-22):2206-2214. PubMed ID: 34472124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of how salt-gradient-induced charges affect the translocation of DNA molecules through a nanopore.
    He Y; Tsutsui M; Scheicher RH; Fan C; Taniguchi M; Kawai T
    Biophys J; 2013 Aug; 105(3):776-82. PubMed ID: 23931325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulation of Protein Translocation through Nanopores by Flow Field Control and Application to Nanopore Sensors.
    Hsu WL; Daiguji H
    Anal Chem; 2016 Sep; 88(18):9251-8. PubMed ID: 27571138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrokinetic translocation of a deformable nanoparticle controlled by field effect in nanopores.
    He X; Wang P; Shi L; Zhou T; Wen L
    Electrophoresis; 2021 Nov; 42(21-22):2197-2205. PubMed ID: 34409625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Particle Capture in Solid-State Multipores.
    Tsutsui M; Yokota K; Nakada T; Arima A; Tonomura W; Taniguchi M; Washio T; Kawai T
    ACS Sens; 2018 Dec; 3(12):2693-2701. PubMed ID: 30421923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in Salt Concentration Modify the Translocation of Neutral Molecules through a ΔCymA Nanopore in a Non-monotonic Manner.
    Prajapati JD; Pangeni S; Aksoyoglu MA; Winterhalter M; Kleinekathöfer U
    ACS Nano; 2022 May; 16(5):7701-7712. PubMed ID: 35435659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theory of Transport-Induced-Charge Electroosmotic Pumping toward Alternating Current Resistive Pulse Sensing.
    Hsu WL; Hwang J; Daiguji H
    ACS Sens; 2018 Nov; 3(11):2320-2326. PubMed ID: 30350951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Limited Formation of Bowl-Shaped Nanopores for Directional DNA Translocation.
    Pham NH; Yao Y; Wen C; Li S; Zeng S; Nyberg T; Tran TT; Primetzhofer D; Zhang Z; Zhang SL
    ACS Nano; 2021 Nov; 15(11):17938-17946. PubMed ID: 34762404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating protein translocation in the presence of an electrolyte concentration gradient across a solid-state nanopore.
    Saharia J; Bandara YMNDY; Kim MJ
    Electrophoresis; 2022 Mar; 43(5-6):785-792. PubMed ID: 35020223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geometrically Induced Selectivity and Unidirectional Electroosmosis in Uncharged Nanopores.
    Di Muccio G; Morozzo Della Rocca B; Chinappi M
    ACS Nano; 2022 Jun; 16(6):8716-8728. PubMed ID: 35587777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current Enhancement in Solid-State Nanopores Depends on Three-Dimensional DNA Structure.
    Wang V; Ermann N; Keyser UF
    Nano Lett; 2019 Aug; 19(8):5661-5666. PubMed ID: 31313927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of Charge Density and Charge Polarity of Nanopore Wall by Salt Gradient and Voltage.
    Lin CY; Turker Acar E; Polster JW; Lin K; Hsu JP; Siwy ZS
    ACS Nano; 2019 Sep; 13(9):9868-9879. PubMed ID: 31348640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroosmotic Trap Against the Electrophoretic Force Near a Protein Nanopore Reveals Peptide Dynamics During Capture and Translocation.
    Asandei A; Schiopu I; Chinappi M; Seo CH; Park Y; Luchian T
    ACS Appl Mater Interfaces; 2016 May; 8(20):13166-79. PubMed ID: 27159806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical Trapping of DNA in a Double-Nanopore System.
    Pud S; Chao SH; Belkin M; Verschueren D; Huijben T; van Engelenburg C; Dekker C; Aksimentiev A
    Nano Lett; 2016 Dec; 16(12):8021-8028. PubMed ID: 27960493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased dwell time and occurrence of dsDNA translocation events through solid state nanopores by LiCl concentration gradients.
    Bello J; Mowla M; Troise N; Soyring J; Borgesi J; Shim J
    Electrophoresis; 2019 Apr; 40(7):1082-1090. PubMed ID: 30580437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field effect regulation of DNA translocation through a nanopore.
    Ai Y; Liu J; Zhang B; Qian S
    Anal Chem; 2010 Oct; 82(19):8217-25. PubMed ID: 20804162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling DNA translocation through gate modulation of nanopore wall surface charges.
    He Y; Tsutsui M; Fan C; Taniguchi M; Kawai T
    ACS Nano; 2011 Jul; 5(7):5509-18. PubMed ID: 21662982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold nanoparticle translocation dynamics and electrical detection of single particle diffusion using solid-state nanopores.
    Goyal G; Freedman KJ; Kim MJ
    Anal Chem; 2013 Sep; 85(17):8180-7. PubMed ID: 23885645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids.
    Luchian T; Park Y; Asandei A; Schiopu I; Mereuta L; Apetrei A
    Acc Chem Res; 2019 Jan; 52(1):267-276. PubMed ID: 30605305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.